DOI QR코드

DOI QR Code

Real-Time Estimation of Missile Debris Predicted Impact Point and Dispersion Using Deep Neural Network

심층 신경망을 이용한 실시간 유도탄 파편 탄착점 및 분산 추정

  • Received : 2020.11.10
  • Accepted : 2021.02.03
  • Published : 2021.03.01

Abstract

If a failure or an abnormal maneuver occurs during the flight test of a missile, the missile is deliberately self-destructed so as not to continue the flight. At this time, debris are produced and it is important to estimate the impact area in real-time whether it is out of the safety area. In this paper, we propose a method to estimate the debris dispersion area and falling time in real-time using a Fully-Connected Neural Network (FCNN). We applied the Unscented Transform (UT) to generate a large amount of training data. UT parameters were selected by comparing with Monte-Carlo (MC) simulation to secure reliability. Also, we analyzed the performance of the proposed method by comparing the estimation result of MC.

유도탄의 비행 시험 중 고장 또는 비정상적인 기동이 발생하는 경우 비행을 계속하지 않도록 의도적으로 자폭한다. 이때 파편이 발생하며 안전 지역을 벗어났는지 여부를 실시간으로 추정하는 것이 중요하다. 본 논문에서는 Fully-Connected Neural Network(FCNN)를 이용하여 실시간으로 파편의 예상 낙하 영역 및 낙하 시간을 추정하는 방법을 제안한다. 많은 양의 학습 데이터 생성을 위해 Unscented Transform(UT)를 적용하였으며 신뢰도 확보를 위해 Monte-Carlo(MC) 시뮬레이션과 비교하여 파라미터를 선정하였다. 또한 제안한 방법의 추정 결과를 MC와 비교하여 성능을 분석하였다.

Keywords

References

  1. Benavoli, A., Chisci, L. and Farina, A., "Tracking of a Ballistic Missile with A-Priori Information," IEEE Transactions on Aerospace and Electronic Systems, Vol. 43, No. 3, July 2007, pp. 1000-1016. https://doi.org/10.1109/TAES.2007.4383589
  2. Moon, K. R., Kim, T. H. and Song, T. L., "Comparison of Ballistic-Coefficient-Based Estimation Algorithms for Precise Tracking of a Re-Entry Vehicle and its Impact Point Prediction," Journal of Astronomy and Space Sciences, Vol. 29, No. 4, 2012, pp. 363-374. https://doi.org/10.5140/JASS.2012.29.4.363
  3. Rhee, S. M., Hong, D. O., Kim, H. C., Huh, L. and Lee, S. W., "Development of a Computer Program for Estimation of Altitude-Dependant Debris Dispersion Range from Ballistic Missile Intercept by Collision," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2017, pp. 639-640.
  4. Reyhanoglu, M. and Alvarado, J., "Estimation of debris dispersion due to space vehicle breakup during reentry," Acta Astronautica, Vol. 86, 2013, pp. 211-218. https://doi.org/10.1016/j.actaastro.2013.01.018
  5. Lee, D. J., Choi, E. J., Cho, S. K., Jo, J. H. and No, T. S., "Effective Computational Approach for Prediction and Estimation of Space Object Breakup Dispersion during Uncontrolled Reentry," International Journal of Aerospace Engineering, Vol. 2018, 2018, pp. 1-16.
  6. Lee, D. J., "Nonlineqr Filtering with Applications to Estimation and Navigation," Ph.D. thesis, Texas A&M University, College Station, TX, USA, 2005.
  7. Julier, S. J. and Uhlmann, J. K., "Unscented Filtering and Nonlinear Estimation," Proceedings of the IEEE, Vol. 92, No. 3, March 2004, pp. 401-422. https://doi.org/10.1109/JPROC.2003.823141
  8. Lee, D. J., Baek, J. B., Choi, W. G., No, T. S., Song, S. B., Ko, R. Y. and Cho, K. S., "A Study on Algorithms for Estimation of Multiple Debris Dispersion and Ground Impact Area due to Missile Disintegration," Journal of The Institute of Electronics and Information Engineers, Vol. 55, No. 4, April 2018, pp. 111-122. https://doi.org/10.5573/ieie.2018.55.4.111
  9. Park, S. H. and Ryoo, C. K., "State Estimation and Trajectory Prediction of a Ballistic Missile," Proceeding of the 2009 KACC Fall Conference, September 2009, pp. 149-154.
  10. Outka, D. E. and LaFarge, R. A., "Mission Hazard Assessment for STARS Mission 1 (M1) in the Marshall Islands Area," SAND93-0218, July 1993.
  11. Yang, H. Y., Moon, K. J., Ryu, J. E. and Ryoo, C. K., "Analysis of Debris Impact Area for Flight Safety Zone Evaluation," Proceeding of The Korean Society for Aeronautical and Space Science Fall Conference, November 2019, pp. 250-251.
  12. Julierm, S. J., "The Scaled Unscented Transformation," Proceedings of the 2002 American Control Conference, Vol. 6, pp. 4555-4559.
  13. Yongfang, N. and Tao, Z., "Scaling parameters selection principle for the scaled unscented Kalman filter," Journal of Systems Engineering and Electronics, Vol. 29, No. 3, pp. 601-610. https://doi.org/10.21629/jsee.2018.03.17