• Title/Summary/Keyword: Time distribution

Search Result 10,951, Processing Time 0.037 seconds

The Comparative Effect of Time-Frequency Distribution Function in a Time-Frequency Domain Reflectometry System (시간-주파수 영역 반사파 계측 시스템에서 다양한 시간-주파수 분포 함수의 영향 연구)

  • Kwak, Ki-Seok;Tok, Son-Choe;Tae, Sung-Yoon;Jin, Bae-Park;Jae, Won-Kho
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2149-2151
    • /
    • 2004
  • The time-frequency domain reflectometry(TFDR) is well known to detect and locate a fault in a coaxial cable[3]. Traditional reflectometry methods have been achieved in either the time domain or frequency domain only. However, the time-frequency domain reflectometry utilizes time and frequency information of a reflected signal passed through a cable to detect and locate the fault. The purpose of this paper is to find appropriate time-frequency distribution function suitable for a TFDR system. Choosing the appropriate time-frequency distribution function implies one can detect the fault and estimate the location accurately. We consider and compare adequate time-frequency distribution function on the basis of experimental results.

  • PDF

The Effect on a Delivery Time Window Dispatching Policy for 3PL Distribution Center (제3자 물류센터 납품시간창 디스패칭 정책에 관한 효과)

  • Lee, Woon-Seek;Kim, Byung Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.60-67
    • /
    • 2014
  • This paper considers an inbound ordering and outbound dispatching problem for multi-products and multi-vehicles in a third-party distribution center. The demands are dynamic over a discrete and finite time horizon, and replenishing orders are shipped in various transportation modes and the freight cost is proportional to the number of vehicles used. Any mixture of products is loaded onto any type of vehicles. The objective of the study is to simultaneously determine the inbound lot-sizes, the outbound dispatching sizes, and the types and numbers of vehicles used to minimize total costs, which consist of inventory holding cost and freight cost. Delivery time window is one of the general dispatching policies between a third-party distribution center and customers in practice. In the policy, each demand of product for a customer must be delivered within the time window without penalty cost. We derive mixed integer programming models for the dispatching policy with delivery time windows and on-time delivery dispatching policy, respectively and analyze the effect on a dispatching policy with delivery time windows by comparing with on-time delivery dispatching policy using various computational experiments.

Development of Overload Evaluation System of Distribution Transformers using Real-Time Monitoring (실시간 감시를 이용한 배전용변압기 과부하 평가 시스템 개발)

  • Park, Chang-Ho;Yun, Sang-Yun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.10
    • /
    • pp.1741-1747
    • /
    • 2010
  • The development of overload management systems for distribution transformers offers new opportunities for improving the reliability of distribution systems. It allows network planners to optimize the system resource utilization and investment cost. Such an improvement in the flexibility of the distribution network is only possible if the operator has more accurate knowledge of the realtime conditions of distribution transformers. In this paper, we present an improved overload decision system for distribution transformers using realtime monitoring data. Our study can be categorized into two parts: (a) improvement in the criteria for judging the overload conditions of distribution transformers and (b) development of an overload evaluation system using realtime monitoring data. In order to determine the overload criteria, overload experiments are performed on sample transformers; the results of these experiments are used to define the relationship between the transformer overload and the increase in the top-oil temperature. To verify the accuracy of the experimental results, field tests are performed using specially manufactured transformers, the loads and top-oil temperatures of which can be measured. For arriving at online overload decisions, we propose methods whereby the measured load curve can be converted into an overload characteristic curve and the overload time can be calculated for any load condition. The developed system is able to evaluate the overload for individual distribution transformers and calculate the losses using realtime monitoring data.

An Analysis on Husbands and Wives' Time Distribution and Space Occupancy in the Division of Labor (부부의 노동분담에 대한 시간대별 활동 및 공간활용도 분석)

  • Yoon So-Young
    • Journal of Family Resource Management and Policy Review
    • /
    • v.9 no.4
    • /
    • pp.21-40
    • /
    • 2005
  • The purpose of this study was to exam the activities by the distribution of time and space occupancy on their weekday and weekend. to study the space and labor segregation by sex. The sample population included 23 wives and their husbands(30-40 years old). The major findings of the research are as follows: First, it shows that wives' time use by activity was consistent with the space occupancy on weekday. Second, on weekend, wives was used to stay in living room most of time. Thirdly, husbands show the stereotype of time use on weekday, and substitute leisure time for labor time. Finally, on weekend, the wives and husbands have the joint time in the household labor or leisure activities.

  • PDF

Location of the Distribution Centers in a Discrete Dynamic Distribution System (이산형 동적 물류시스템에서 물류센터의 위치)

  • Chang, Suk-Hwa
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.19-27
    • /
    • 2008
  • This paper addresses determining the location of the distribution centers in a discrete dynamic distribution system. In discrete and finite time horizon, the demands of retailers are dynamic for the periods. Some locations among the retailers can be chosen for the role of the distribution centers at the beginning of each period. The distribution centers have to be located at the location of minimizing logistics cost. Logistics cost factors are the operation cost and the fixed cost of distribution center, and the transportation cost. The distribution centers of minimizing sum of operation cost, fixed cost and transportation cost are determined among retailers in each period for the planning period. A mathematical model was formulated and a dynamic programming based algorithm was developed. A numerical example was shown to explain our problem.

Test of Independence in a Markov Dependent Waiting-time Distribution

  • Bai, Do-Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.1 no.1
    • /
    • pp.99-103
    • /
    • 1975
  • A procedure for the test of independence of the observations and the null distribution are studied for a waiting-time distribution of the number of Bernoulli trials required to obtain a preassigned number of successes under Markov dependence. Selected critical values for the test statistic are tabulated.

  • PDF

Performance Evaluation of Real-Time Power-Aware Scheduling Techniques Incorporating Idle Time Distribution Policies (실행 유휴 시간 분배 정책에 따른 실시간 전력 관리 스케줄링 기법의 성능 평가)

  • Tak, Sungwoo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.7
    • /
    • pp.1704-1712
    • /
    • 2014
  • The unused Worst-Case Execution Time (WCET) allocated to a real-time task occurs when the actual execution time of the task can be far less than the WCET preassigned to the task for a schedulability test. Any unused WCET allocated to the task can be exploited to reduce the power consumption of battery-powered sensor nodes through real-time power-aware scheduling techniques. From the distribution perspective of the unused WCET, the unused WCET distribution policy is classified into three types: Conservative Unused WCET (CU-WCET), Moderate Unused WCET (MU-WCET), and Aggressive Unused WCET (AU-WCET) distribution policies. We evaluated the performance of real-time power-aware scheduling techniques incorporating each of three unused WCET distribution policies in terms of low power consumption.

Fractional Fourier Domains and the Shift-Invariance Characteristics of Linear Time-Frequency Distributions (부분 푸리에 영역과 선형 시간-주파수 분포의 옮김 불변 특성)

  • Durak Lutfiye;Kang Hyun Gu;Yoon Seokho;Lee Jumi;Kwon Hyoungmoon;Choi Sang Won;Song Iickho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11C
    • /
    • pp.1060-1067
    • /
    • 2005
  • In this paper, we generalize the shift-invariance properties of linear time-frequency distributions to the fractional Fourier domains that interpolate between the time and frequency domains. Magnitude-wise shift invariance in arbitrary fractional Fourier domains distinguishes the short-time Fourier transform (STFT) among all linear time-frequency distributions and simplifies the interpretation of the resultant distribution. We prove that the STFT is the only linear distribution that satisfies the magnitude-wise shift-invariance property in the fractional Fourier domains.

Fano Decoding with Timeout: Queuing Analysis

  • Pan, W. David;Yoo, Seong-Moo
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.301-310
    • /
    • 2006
  • In mobile communications, a class of variable-complexity algorithms for convolutional decoding known as sequential decoding algorithms is of interest since they have a computational time that could vary with changing channel conditions. The Fano algorithm is one well-known version of a sequential decoding algorithm. Since the decoding time of a Fano decoder follows the Pareto distribution, which is a heavy-tailed distribution parameterized by the channel signal-to-noise ratio (SNR), buffers are required to absorb the variable decoding delays of Fano decoders. Furthermore, since the decoding time drawn by a certain Pareto distribution can become unbounded, a maximum limit is often employed by a practical decoder to limit the worst-case decoding time. In this paper, we investigate the relations between buffer occupancy, decoding time, and channel conditions in a system where the Fano decoder is not allowed to run with unbounded decoding time. A timeout limit is thus imposed so that the decoding will be terminated if the decoding time reaches the limit. We use discrete-time semi-Markov models to describe such a Fano decoding system with timeout limits. Our queuing analysis provides expressions characterizing the average buffer occupancy as a function of channel conditions and timeout limits. Both numerical and simulation results are provided to validate the analytical results.

  • PDF

A Study of Residence Time Calculation Methods in Decay Tank Design (감쇠탱크 설계를 위한 체류시간 계산 방법에 관한 연구)

  • Jung, Minkyu;Seo, Kyoungwoo;Kim, Seonghoon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.5
    • /
    • pp.220-230
    • /
    • 2017
  • In this study we apply and compare a variety of numerical methods for calculating residence time distribution in decay tanks, a major design component in the for reducing N-16 radioactivity. Our research group has used a streamlined method using user-defined particle numbers. However, this streamlined method has several problems, including low exiting particle ratios, particle diminishing, and unphysical time distribution, among others. We utilize three numerical methods to establish residence time and time distribution (streamlined, discrete phase method [DPM], and user defined scalar [UDS]) and subsequently compare the averaged results of each. The three tests demonstrate the flow features within the decay tanks, which are then numerically simulated to enable comparison. We conclude that although each simulation predicts similar time averages, the UDS methodology provides a smoother time distribution and tracer contour plots at specific times.