• Title/Summary/Keyword: Time dependent boundary condition

Search Result 52, Processing Time 0.05 seconds

Harbor Tranquility Analysis with the Reflection-Transmission Boundary Condition of Floating Breakwaters (부유식 방파제의 반사-투과 경계조건을 적용한 항만 정온도의 해석)

  • 전인식;최민호;심재설;오병철
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.14 no.1
    • /
    • pp.76-85
    • /
    • 2002
  • The floating breakwater generally has an excellent water exchanging capability, but with some lowering harbor tranquility due to the wave transmission underneath floating body. In the initial stage of design, it is thus required to investigate several alternatives of breakwater layout for their performance of harbor tranquility. The present study aims to formulate a sort of reflection-transmission boundary condition of floating breakwater so that the existing numerical method using time dependent mild slope equation can still be applied to the case of floating breakwaters. The two and three dimensional tests were each performed to demonstrate the performance of the boundary condition. It was found that the reflection and transmission characteristics around the breakwater were well reproduced by the boundary condition. Finally, the reflection-transmission boundary condition were applied to a floating breakwater installed in an imaginary harbor with an irregular shape and bottom topography. The results surely showed that the present numerical method can effectively used in practical works related to the real sea construction of floating breakwaters.

A Study on the Unsteady Temperature Characteristics at the Refrigerator Gasket Region (냉장고 가스켓 주위의 시간에 따른 온도변동 특성에 관한 연구)

  • Ha, Ji Soo
    • Journal of Energy Engineering
    • /
    • v.21 no.2
    • /
    • pp.138-143
    • /
    • 2012
  • The present study has been carried out to elucidate the unsteady temperature characteristics of a refrigerator near gasket region by measuring time dependent temperature measurements. From the measured values of the time dependent temperature inside and outside region of a refrigerator, one could see that the temperature varies periodically with time from the effect of refrigerator operation. The measured mean temperatures at the wall had great different value from the previous other research results conducted by numeric ofheat transfer using improperfheat transfer boundary condition. The present study could give the experiment ofdata for the properfnumeric ofheat transfer an oysis and suggest more accuratefheat transfer boundary conditions for the inside and outside of a refrigerator.

A time-domain analysis for a nonlinear free-surface problem (시간영역에서의 비선형 자유표면파문제에 대한 수치해석)

  • Kyoung Jo Hyun;Bai Kwang June;Chung Sang Kwon;Kim Do Young
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.381-384
    • /
    • 2002
  • The free surface flow problem has been one of the most interesting and challenging topic in the area of the naval ship hydrodynamics and ocean engineering field. The problem has been treated mainly in the scope of the potential theory and its governing equation is well known Laplace equation. But in general, the exact solution to the problem is very difficult to obtain because of the nonlinearlity of the free surface boundary condition. Thus the linearized free surface problem has been treated often in the past. But as the computational power increases, there is a growing trend to solve the fully nonlinear free surface problem numerically. In the present study, a time-dependent finite element method is developed to solve the problem. The initial-boundary problem is formulated and replaced by an equivalent variational formulation. Specifically, the computations are made for a highly nonlinear flow phenomena behind a transom stern ship and a vertical strut piercing the free surface.

  • PDF

Acoustic Scattering from Circular Cylinder by Periodic Sources (주기적인 음원에 의한 원형 실린더의 음향 산란)

  • Lee, Duck-Joo;Kim, Yong-Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.1 s.118
    • /
    • pp.41-47
    • /
    • 2007
  • Scattering fields of two dimensional acoustic waves by a circular cylinder are investigated. The present numerical approach for the acoustic scattering problem has difficulties of numerical robustness, long-time stability and suitability of far-field boundary treatments. The time-dependent periodic acoustic source is used to analyze Interference patterns between incident waves and waves reflected by the cylinder. Characteristic boundary algorithms coupled with 4th order Modified-Flux-Approach ENO(essentially non-oscillatory) schemes are employed in generalized coordinates to examine the effect of the wane frequency on the interference patterns. Non-reflecting boundary conditions, which is crustal for accurate computations of aeroacoustic problems, are used not to contaminate scattering fields by reflected waves at the outer boundary. Computed scattering fields show the circumferential acoustic modes generated by interacting between acoustic sources and scattered waves. At a lower frequency, the wave passes almost straight through the cylinder without Interacting with circular cylinder. Simulation results are presented and compared with the analytic solution. Computed RMS-pressure distribution on the cylinder wall is good agreement with exact solution.

Transonic Aeroelastic Analysis of a Airfoil with Friction Damping (마찰 감쇠를 고려한 에어포일의 천음속 공탄석 해석)

  • Yoo, Jae-Han;Lee, In
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1075-1080
    • /
    • 2010
  • For the aeroelastic analysis of a wing with friction damping, coupled time integration method was used to obtain time responses in the subsonic and transonic regions. To take into account aerodynamic nonlinearity induced by shock wave on the lifting surface, transonic small disturbance equation with in-phase periodic boundary condition was used for unsteady aerodynamic calculation. For 2-DOF airfoil system with displace-dependent friction dampers, the effects of normal load slope and Mach number on flutter boundary were investigated.

Wave Field Analysis around Permeable Rubble-Mound Breakwaters (투과 사석방파제 주변의 파랑장 해석)

  • 곽문수;이기상;편종근
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.116-126
    • /
    • 2003
  • In this study, a method that leads to make a simple decision on important parameters in analysis of wave field in permeable rubble-mound, block-mound breakwater, such as penetration velocity of incident waves and resistance coefficient, is introduced. A model that could analyze wave field of permeable breakwater in harbor, by applying these methods and arbitrary transmission coefficient boundary condition to a time-dependent mild-slope equation, was introduced. The verification of the model was done by carrying out 2-D physical model test on permeable breakwater, measuring the change in water surface elevation, comparing the computation result with time series, and comparing the result gained from the 3-D physical model test on permeable block-mound breakwater in an field harbor with the computation result in terms of regional wave height ratio in a harbor.

An Analysis of Wave Height Distribution in the Vicinity of Samcheon New-Harbor (삼천포 신항의 파고분포 해석)

  • Jang, Dae-Jeong;Ham, Gye-Un
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.39-46
    • /
    • 2010
  • The calmness inside a harbor plays an important role in the appropriate disposition of harbor structures. However, it is not easy to acquire accurate computational results because these are affected by many factors concerned with wave transformation. Recently, numerical model tests, which are quicker and more economical than hydraulic model experiments, were carried out for the purpose of analyzing wave height distributions in harbors. This paper presents a numerical model that is able to calculate wave heights inside a harbor. It is based on a time-dependent mild slope involving wave refraction, diffraction, shoaling effect, and reflection. In particular, arbitrary reflectivity is used at the boundary in order to simulate the real harbor reflection condition. The proposed numerical model is applied to Samcheon new-harbor in order to investigate harbor calmness.

Appropriate Boundary Conditions for Three Dimensional Finite Element Implicit Dynamic Analysis of Flexible Pavement (연성포장의 3차원 유한요소해석을 위한 최적 경계조건 분석)

  • Yoo, Pyeong-Jun;Al-Qadi, Imad L.;Kim, Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.213-224
    • /
    • 2008
  • Flexible pavement responses to vehicular loading, such as critical stresses and strains, in each pavement layer, could be predicted by the multilayered elastic analysis. However, multilayered elastic theory suffers from major drawbacks including spatial dimension of a numerical model, material properties considered in the analysis, boundary conditions, and ill-presentation of tire-pavement contact shape and stresses. To overcome these shortcomings, three-dimensional finite element (3D FE) models are developed and numerical analyses are conducted to calculate pavement responses to moving load in this study. This paper introduces a methodology for an effective 3D FE to simulate flexible pavement structure. It also discusses the mesh development and boundary condition analysis. Sensitivity analyses of flexible pavement response to loading are conducted. The infinite boundary conditions and time-dependent history of calculated pavement responses are considered in the analysis. This study found that the outcome of 3D FE implicit dynamic analysis of flexible pavement that utilizes appropriate boundary conditions, continuous moving load, viscoelastic hot-mix asphalt model is comparable to field measurements.

  • PDF

A study on the dynamic instabilities of a smart embedded micro-shell induced by a pulsating flow: A nonlocal piezoelastic approach

  • Atabakhshian, Vahid;Shooshtaria, Alireza
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.133-145
    • /
    • 2020
  • In this study, nonlinear vibrations and dynamic instabilities of a smart embedded micro shell conveying varied fluid flow and subjected to the combined electro-thermo-mechanical loadings are investigated. With the aim of designing new hydraulic sensors and actuators, the piezoelectric materials are employed for the body and the effects of applying electric field on the stability of the system as well as the induced voltage due to the dynamic behavior of the system are studied. The nonlocal piezoelasticity theory and the nonlinear cylindrical shell model in conjunction with the energy approach are utilized to mathematically modeling of the structure. The fluid flow is assumed to be isentropic, incompressible and fully develop, and for more generality of the problem both steady and time dependent flow regimes are considered. The mathematical modeling of fluid flow is also carried out based on a scalar potential function, time mean Navier-Stokes equations and the theory of slip boundary condition. Employing the modified Lagrange equations for open systems, the nonlinear coupled governing equations of motion are achieved and solved via the state space problem; forth order numerical integration and Bolotin's method. In the numerical results, a comprehensive discussion is made on the dynamical instabilities of the system (such as divergence, flutter and parametric resonance). We found that applying positive electric potential field will improve the stability of the system as an actuator or vibration amplitude controller in the micro electro mechanical systems.

Numerical Simulation of Unsteady Inviscid Waves by Spectral Method

  • Lee, Jin-Ho;Chun, Ho-Hwan
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.04a
    • /
    • pp.140-145
    • /
    • 2000
  • The spectral method which is composed of an eigenfunction expansion of free modes in the wave number domain is used to produce two dimensional unsteady inviscid wave simulation such as progressive waves in a numerical pneumatic wave tank. A spatial and time dependent free surface elevation and the potential are calculated by integrating ODE derived from fully nonlinear kinematic and dynamic free surface boundary condition at each time step. The nonlinear characteristics in the waves by this method were notable as increasing wave steepness. This method is very useful and powerful in terms of saving computational time caused by rapid convergence exponentially with increasing number of nodes, even preserving accurate numerical results. Moreover, it will given us many possibilities to apply to naval and ocean engineering fields.

  • PDF