• Title/Summary/Keyword: Time delay system

Search Result 2,716, Processing Time 0.032 seconds

Chaotifying a Continuous-Time TS Fuzzy System with Time-Delay (시간 지연을 이용한 연속시간 TS 퍼지 시스템의 카오스화)

  • Kim, Taek-Ryong;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2215-2217
    • /
    • 2004
  • In this paper, a systematic design approach based on the parallel distributed compensation technique is proposed for chaotifying a general continuous-time Takagi-Sugeno (TS) fuzzy system. The fuzzy parallel distributed compensation controller (FPDCC) is composed of the feedback gain and time-delay feedback. The verification of chaos in the controlled continuous-time TS fuzzy system is done by the following procedures. First, we establish an asymptotically approximate relationship between a time-delay continuous-time TS fuzzy system and a discrete-time TS fuzzy system. Then, Marotto theorem is applied. Therefore, the generated chaos is in the sense of Li and Yorke. The boundedness in the controlled continuous-time TS fuzzy system is also proven via its associated discrete-time TS fuzzy system.

  • PDF

Development of Signal Monitoring Platform for Sound Source Localization System

  • Myagmar, Enkhzaya;Kwon, Soon Ryang;Lee, Dong Myung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.961-963
    • /
    • 2012
  • The sound source localization system is used to some area such as robotic system, object localization system, guarding system and medicine. So time delay estimation and angle estimation of sound direction are studied until now. These days time delay estimation is described in LabVIEW which is used to create innovative computer-based product and deploy measurement and control systems. In this paper, the development of signal monitoring platform is presented for sound source localization. This platform is designed in virtual instrument program and implemented in two stages. In first stage, data acquisition system is proposed and designed to analyze time delay estimation using cross correlation. In second stage, data obtaining system which is applied and designed to monitor analog signal processing is proposed.

Control of Visual Tracking System with a Random Time Delay (랜덤한 시간 지연 요소를 갖는 영상 추적 시스템의 제어)

  • Oh, Nam-Kyu;Choi, Goon-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.3
    • /
    • pp.21-28
    • /
    • 2011
  • In recent years, owing to the development of the image processing technology, the research to build control system using a vision sensor is stimulated. However, a random time delay must be considered, because it works of a various time to get a result of an image processing in the system. It can be seen as an obstacle factor to a control of visual tracking in real system. In this paper, implementing two vision controllers each, first one is made up PID controller and the second one is consisted of a Smith Predictor, the possibility was shown to overcome a problem of a random time delay in a visual tracking system. A number of simulations and experiments were done to show the validity of this study.

Design of Intelligent Controller with Time Delay for Internet-Based Remote Control (인터넷 기반 원격제어를 위한 임의의 시간지연을 갖는 지능형 제어기의 설계)

  • Joo, Young-Hoon;Kim, Jung-Chan;Lee, Oh-Jae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.3
    • /
    • pp.293-299
    • /
    • 2003
  • This paper discusses a design of intelligent controller with time delay for Internet-based remote control. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The Takagi-Sugeno (T-S) fuzzy system with uncertain input delay is utilized to represent nonlinear plant. The continuous-time T-S fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized T-S fuzzy system is represented by a discrete-time T-S fuzzy system with jumping parameters. The robust stochastic stabilizibility of the jump T-S fuzzy system is derived and formulated in terms of linear matrix inequalities (LMIs). An experimental results is provided to visualize the feasibility of the proposed method.

Measurement Time-Delay Error Compensation for Transfer Alignment (전달정렬의 측정치 시간지연 오차보상 기법)

  • Lim, You-Chol;Song, Gi-Won;Lyou, Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.11
    • /
    • pp.953-957
    • /
    • 2001
  • This paper is concerned with a transfer alignment method for the SDINS under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonliner measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

Robustness Analysis Under Second-Order Plant and Delay Uncertainties for Symmetrically Coupled Systems with Time Delay

  • Cheong Joon-O;Kwon Sang-Joo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1195-1208
    • /
    • 2006
  • This paper aims at presenting robustness analysis under the uncertainties of the time delay and plant parameters in symmetrically coupled dynamic systems connected through network having time delay. The delay-involved closed loop characteristic function is mathematically formulated, incorporated with active synchronization control. And the robust stability of the corresponding system is analyzed by investigating the formation of characteristic equation containing second- order terms of uncertainty variables representing delay and plant dynamics mismatches. For the two individual types of uncertainties, we elucidate details of how to compute the bounds and what they imply physically. To support the validity of the mathematical claims, numerical examples and simulations are presented.

Measurement Time-Delay Error Compensation For Transfer Alignment

  • Lim, You-Chol;Song, Ki-Won;Joon Lyou
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.486-486
    • /
    • 2000
  • This paper is concerned with a transfer alignment method for the SDINS(StrapDown Inertial Navigation System) under ship motions. Major error sources of transfer alignment are data transfer time-delay, lever-arm velocity and ship body flexure. Specifically, to reduce alignment errors induced by measurement time-delay effects, the error compensation method through delay state augmentation is suggested. A linearized error model for the velocity and attitude matching transfer alignment system is first derived by linearizing the nonlinear measurement equation with respect to its time delay and augmenting the delay state into the conventional linear state equations. And then it is shown via observability analysis and computer simulations that the delay state can be estimated and compensated during ship motions resulting in considerably less alignment errors.

  • PDF

Stochastic Stabilization of TS Fuzzy System with Markovian Input Delay (마코프 입력 지연 시스템의 확률적 안정화)

  • Lee, Ho-Jae;Park, Jin-Bae;Lee, Sang-Youn;Joo, Young-Hoon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.153-156
    • /
    • 2001
  • This paper discusses a stochastic stabilization of Takagi-Sugeno (75) fuzzy system with Markovian input delay. The finite Markovian process is adopted to model the input delay of the overall control system. It is assumed that the zero and hold devices are used for control input. The continuous-time 75 fuzzy system with the Markovian input delay is discretized for easy handling delay, accordingly, the discretized 75 fuzzy system is represented by a discrete-time 75 fuzzy system with jumping parameters. The stochastic stabilizibility of the jump 75 fuzzy system is derived and formulated in terms of linear matrix inequalities (LMls).

  • PDF

Reduction of Channel Change Delay Using Adjacent Channel Delivery in P2P Based IPTV Systems (P2P방식의 IPTV시스템에서 인접채널 전송방식을 이용한 채널변경 지연시간의 단축)

  • Kim, Ji-Hoon;Kim, Young-Han
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.115-121
    • /
    • 2009
  • In this paper, we propose an algorithm that reduces channel change delay time in the P2P based IPTV system. Channel change delay time is considered to be one of the most important performance measures in IPTV system. Proposed algorithm presents a method to reduce the channel change delay time effectively. The algorithm eliminates the first channel change delay time and reduces delay time on a continuous channel surfing. We will show the mathematical models to evaluate the performance of proposed scheme with respect to the channel change delay time.

Time Delay Control of Noncolocated Flexible System in z-Domain (비병치 유연계의 시간지연 이산제어)

  • 강민식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1089-1098
    • /
    • 1992
  • This paper concerns a discrete time control of noncolocated flexible mechanical systems by using time delay relation. A stability criterion of closed-loop system is derived in discrete time domain and a graphic method is developed for designing controllers. Based on this method, a derivative controller is designed for a simply supported uniform beam in the cases of colocation without time delay and of noncolocation with time delay. Some simulation results show the effectiveness of the suggested control.