• 제목/요약/키워드: Time Transfer Matrix Method

검색결과 90건 처리시간 0.025초

탄소섬유강화복합소재의 고압수지이송성형공정에서 금형 내 캐비티의 압력 및 온도신호에 따른 성형특성 (Forming Characteristics with Cavity Pressure and Temperature Signal Inside Mold in High-Pressure Resin Transfer Molding Process of Carbon Fiber Reinforced Composite Material)

  • 한범정;정용채;김성렬;김노원;강명창
    • 한국기계가공학회지
    • /
    • 제16권6호
    • /
    • pp.81-86
    • /
    • 2017
  • The high-pressure resin transfer molding (HP-RTM) process has a very effective for the mass production of carbon fiber reinforced plastic (CFRP) for light weight in the automotive industry. In developing robust equipment, new process and fast cure matrix systems reduces significantly the cycle time less than 5 minutes in recent years. This paper describes the cavity pressure, temperature and molding characteristics of the HP-RTM process. The HP-RTM mold was equipped with two cavity pressure sensors and three temperature sensors. The cavity pressure characteristics of the HP-RTM injection, pressurization, and curing processes were studied. This experiment was conducted with selected process parameters such as mold cap size, maximum press force, and injection volume. Consequently, this monitoring method provides correlations between the selected process parameters and final forming characteristics in this work.

벽식구조물 바닥의 효율적인 진동해석 (Efficient Vibration Analysis of Floors in A Shear Wall Building Structure)

  • 김현수;이동근;이선화
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2004년도 봄 학술발표회 논문집
    • /
    • pp.357-364
    • /
    • 2004
  • Recently, many high-rise apartment buildings using the box system composed of only reinforced connote walls and slabs, have been constructed In residential buildings such as apartments, vibrations occur from various sources and these vibrations transfer to neighboring residential units through walls and slabs. It is necessary to use a refined finite element model for an accurate vibration analysis of shear wall building structures. But it would take significant amount of computational time and memory if the entire building structure were subdivided into a finer mesh. Therefore an efficient analytical method, which has only translational DOFs perpendicular to walls or slabs by the matrix condensation technique, is proposed in this study to obtain accurate results in significantly reduced computational time.

  • PDF

Adaptive control of gas metal arc welding process

  • Song, Jae-Bok;Hardt, David-E.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.191-196
    • /
    • 1993
  • Since the welding process is complex and highly nonlinear, it is very difficult to accurately model the process for real-time control. In this paper, a discrete-time transfer function matrix model for gas metal arc welding process is proposed. Although this linearized model is valid only around the operating point of interest, the adaptation mechanism employed in the control system render this model useful over a wide operating range. A multivariable one-step-ahead adaptive control strategy combined with a recursive least-squares method for on-line parameter estimation is implemented in order to achieve the desired weld bead geometries. Command following and disturbance rejection properties of the adaptive control system for both SISO and MIMO cases are investigated by simulation and experiment.

  • PDF

출력 시간 지연 시스템의 루우프 복구특성 (LTR properties for output-delayed systems)

  • 이상정;홍석민
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.161-167
    • /
    • 1993
  • This paper presents robustness properties of the Kalman Filter ad the associated LQG/LTR method for linear time-invariant systems having delays in both the state and output. A circle condition relating to the return difference matrix associated with the Kalman filter is derived. Using this circle condition, it is shown that the Kalman filter guarantees(1/2, .inf.) gain margin and .+-.60.deg. phase margin, which are the same as those for nondelay systems. However, it is shown that, even for minimum phase plants, the LQG/LTR method can not recover the target loop transfer function. Instead, an upper bound on the recovery error is obtained using an upper bound of the solution of the Kalman filter Riccati equations. Finally, some dual properties between output-delated system and input-delayed systems are exploited.

  • PDF

신경회로망을 이용한 ATM 교환기의 제어부 설계 (Design of an ATM Switch Controller Using Neural Networks)

  • 김영우;임인칠
    • 전자공학회논문지B
    • /
    • 제31B권5호
    • /
    • pp.123-133
    • /
    • 1994
  • This paper presents an output arbitrator for input buffering ATM (Asynchronous Transfer Mode) switches using neural networks. To avoid blocking in ATM switches with blocking characteristics, it is required to buffer ATM cells in input buffer and to schedule them. The N$\times$N request matrix is divided into N/16 submatrices in order to get rid of internal blocking systematically in scheduling phase. The submatrices are grouped into N/4 groups, and the cells in each group are switched alternatively. As the window size of input buffer is increases, the number of input cells switched in a time slot approaches to N. The selection of nonblocking cells to be switched is done by neural network modules. N/4 neural network modules are operated simultaneously. Fast selection can be achieved by massive parallelism of neural networks. The neural networks have 4N neurons and 14N connection. The proposed method is implemented in C language, and the simulation result confirms the feasibility of this method.

  • PDF

Frequency Characteristics of the Synchronous-Frame Based D-Q Methods for Active Power Filters

  • Wang, Xiaoyu;Liu, Jinjun;Hu, Jinku;Meng, Yuji;Yuan, Chang
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.91-100
    • /
    • 2008
  • The d-q harmonic detecting algorithms are dominant methods to generate current references for active power filters (APF). They are often implemented in the synchronous frame and time domain. This paper researches the frequency characteristics of d-q synchronous transformations, which are closely related to the analysis and design issues of control system. Intuitively, the synchronous transformation is explained with amplitude modulation (AM) in this paper. Then, the synchronous filter is proven to be a time-invariant and linear system, and its transfer function matrix is derived in the stationary frames. These frequency-domain models imply that the synchronous transformation has an equivalent effect of frequency transformation. It is because of this feature, the d-q method achieves band-pass characteristics with the low pass filters in the synchronous frame at run time. To simplify these analytical models, an instantaneous positive-negative sequence frame is proposed as expansion of traditional symmetrical components theory. Furthermore, the synchronous filter is compared with the traditional bind-pass filters based on these frequency-domain analytical models. The d-q harmonic detection methods are also improved to eliminate the inherent coupling effect of synchronous transformation. Typical examples are given to verify previous analysis and comparison. Simulation and experimental results are also provided for verification.

매트릭스 컨버터에 의한 AC 서보 영구자석형 동기전동기의 제어기 설계에 대한 고찰 : 속도제어기 (Study on Controller Design of AC Servo Permanent Magnet Synchronous Motor by Matrix Converter : Speed Controller)

  • 정충일;이상철;모동영;최창영;김태웅;박귀근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 하계학술대회 논문집
    • /
    • pp.106-108
    • /
    • 2008
  • This paper deals with the design for speed controller to drive PMSM by matrix converter without DC-link circuit as the power conversion system of AC servo motor drive. To design the speed controller of PMSM drive, the closed-loop transfer function of speed controller is calculated and then the frequency-domain response characteristics are analyzed by bode plot using Matlab. Based on the results by bode plot, the speed control gains are determined. As the real effects of controller designed in the frequency-domain display in the time-domain, the performance of speed controller is confirmed by the step response of speed controller. The design examples are shown and its validity of the design method mentioned in the paper is verified through PSIM simulation.

  • PDF

Identification of impact forces on composite structures using an inverse approach

  • Hu, Ning;Matsumoto, Satoshi;Nishi, Ryu;Fukunaga, Hisao
    • Structural Engineering and Mechanics
    • /
    • 제27권4호
    • /
    • pp.409-424
    • /
    • 2007
  • In this paper, an identification method of impact force is proposed for composite structures. In this method, the relation between force histories and strain responses is first formulated. The transfer matrix, which relates the strain responses of sensors and impact force information, is constructed from the finite element method (FEM). Based on this relation, an optimization model to minimize the difference between the measured strain responses and numerically evaluated strain responses is built up to obtain the impact force history. The identification of force history is performed by a modified least-squares method that imposes the penalty on the first-order derivative of the force history. Moreover, from the relation of strain responses and force history, an error vector indicating the force location is defined and used for the force location identification. The above theory has also been extended into the cases when using acceleration information instead of strain information. The validity of the present method has been verified through two experimental examples. The obtained results demonstrate that the present approach works very well, even when the internal damages in composites happen due to impact events. Moreover, this method can be used for the real-time health monitoring of composite structures.

Motion planning of a steam generator mobile tube-inspection robot

  • Xu, Biying;Li, Ge;Zhang, Kuan;Cai, Hegao;Zhao, Jie;Fan, Jizhuang
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1374-1381
    • /
    • 2022
  • Under the influence of nuclear radiation, the reliability of steam generators (SGs) is an important factor in the efficiency and safety of nuclear power plant (NPP) reactors. Motion planning that remotely manipulates an SG mobile tube-inspection robot to inspect SG heat transfer tubes is the mainstream trend of NPP robot development. To achieve motion planning, conditional traversal is usually used for base position optimization, and then the A* algorithm is used for path planning. However, the proposed approach requires considerable processing time and has a single expansion during path planning and plan paths with many turns, which decreases the working speed of the robot. Therefore, to reduce the calculation time and improve the efficiency of motion planning, modifications such as the matrix method, improved parent node, turning cost, and improved expanded node were proposed in this study. We also present a comprehensive evaluation index to evaluate the performance of the improved algorithm. We validated the efficiency of the proposed method by planning on a tube sheet with square-type tube arrays and experimenting with Model SG.

Symbolic computation and differential quadrature method - A boon to engineering analysis

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • 제27권6호
    • /
    • pp.713-739
    • /
    • 2007
  • Nowadays computers can perform symbolic computations in addition to mere number crunching operations for which they were originally designed. Symbolic computation opens up exciting possibilities in Structural Mechanics and engineering. Classical areas have been increasingly neglected due to the advent of computers as well as general purpose finite element software. But now, classical analysis has reemerged as an attractive computer option due to the capabilities of symbolic computation. The repetitive cycles of simultaneous - equation sets required by the finite element technique can be eliminated by solving a single set in symbolic form, thus generating a truly closed-form solution. This consequently saves in data preparation, storage and execution time. The power of Symbolic computation is demonstrated by six examples by applying symbolic computation 1) to solve coupled shear wall 2) to generate beam element matrices 3) to find the natural frequency of a shear frame using transfer matrix method 4) to find the stresses of a plate subjected to in-plane loading using Levy's approach 5) to draw the influence surface for deflection of an isotropic plate simply supported on all sides 6) to get dynamic equilibrium equations from Lagrange equation. This paper also presents yet another computationally efficient and accurate numerical method which is based on the concept of derivative of a function expressed as a weighted linear sum of the function values at all the mesh points. Again this method is applied to solve the problems of 1) coupled shear wall 2) lateral buckling of thin-walled beams due to moment gradient 3) buckling of a column and 4) static and buckling analysis of circular plates of uniform or non-uniform thickness. The numerical results obtained are compared with those available in existing literature in order to verify their accuracy.