• Title/Summary/Keyword: Time Synchronous

Search Result 749, Processing Time 0.033 seconds

A Study on Current Ripple Reduction Due to Offset Error and Dead-time Effect of Single-phase Grid-connected Inverters Based on PR Controller (비례공진 제어기를 이용한 단상 계통연계형 인버터의 데드타임 영향과 옵셋 오차로 인한 전류맥동 저감에 관한 연구)

  • Seong, Ui-Seok;Hwang, Seon-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.201-208
    • /
    • 2015
  • The effects of dead-time and offset error, which cause output current distortion in single-phase grid-connected inverters are investigated this paper. Offset error is typically generated by measuring phase current, including the voltage unbalance of analog devices and non-ideal characteristics in current measurement paths. Dead-time inevitably occurs during generation of the gate signal for controlling power semiconductor switches. Hence, the performance of the grid-connected inverter is significantly degraded because of the current ripples. The current and voltage, including ripple components on the synchronous reference frame and stationary reference frame, are analyzed in detail. An algorithm, which has the proportional resonant controller, is also proposed to reduce current ripple components in the synchronous PI current regulator. As a result, computational complexity of the proposed algorithm is greatly simplified, and the magnitude of the current ripples is significantly decreased. The simulation and experimental results are presented to verify the usefulness of the proposed current ripple reduction algorithm.

Continuous Sliding Mode Control for Permanent Magnet Synchronous Motor Speed Regulation Systems Under Time-Varying Disturbances

  • Wang, Huiming;Li, Shihua;Yang, Jun;Zhou, XingPeng
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1324-1335
    • /
    • 2016
  • This article explores the speed regulation problem of permanent magnet synchronous motor (PMSM) systems subjected to unknown time-varying disturbances. A continuous sliding mode control (CSMC) technique is introduced for the speed loop to enhance the robustness of PMSM systems and eliminate the chattering phenomenon caused by high-frequency switch function in the conventional control law. However, the high control gain of the CSMC law in the presence of strong disturbances leads to large steady-state speed fluctuations for PMSM systems. In many application fields, PMSM systems are affected by time-varying disturbances instead of constant disturbances. For example, electric bicycles are usually affected by changing environmental disturbances, including wind speeds, road conditions, etc. These disturbances may be in the form of constant, ramp, and parabolic disturbances. Hence, a generalized proportional integral (GPI) observer is employed to estimate these types of disturbances. Then, the disturbance estimation method and the aforementioned CSMC method are combined to establish a composite sliding mode control method called the CSMC+GPI method for the speed loop of PMSM systems. Contrary to the conventional sliding mode control technique, the proposed method completely eliminates the chattering phenomenon caused by the switching function in the conventional control law. Moreover, a small control gain for the CSMC+GPI method is chosen by feed-forwarding estimated values to the speed controller. Hence, the steady-state speed fluctuations are small. The effectiveness of the proposed control scheme is verified by simulation and experimental result.

A Synchronous Digital Duplexing Technique for Wireless Transmission in Indoor Environments (옥내 환경에서 무선 전송을 위한 동기식 디지털 이중화 방식)

  • Park, Chang-Hwan;Ko, Yo-Han;Park, Kyung-Won;Jeon, Won-Gi;Paik, Jong-Ho;Lee, Seok-Pil;Cho, Yong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.971-982
    • /
    • 2008
  • In this paper, we propose a new digital duplexing scheme, called SDD(Synchronous Digital Duplexing), which can increase data efficiency and flexibility of resource by transmitting uplink signal and downlink signal simultaneously. In order to transmit uplink data and downlink data simultaneously, the proposed SDD obtains mutual informations between AP(access point) and each SSs(subscriber station), SS and other SSs by mutual ranging procedure. These informations are used for selection of transmission time, decision of CS insertion, setting of CS length, and FFT duration resetting, etc. It is shown that the proposed SDD is appropriate for duplexing scheme in indoor environments over the conventional TDD(Time Division Duplexing) and FDD(Frequency Division Duplexing).

Android-Based Synchronous Mobile Distance Learning System with Session Recording and Replay Support (세션 레코딩과 리플레이를 지원하는 안드로이드 기반 동기식 모바일 원격 교육 시스템)

  • Sung, Dae-Hyun;Lee, Jang-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1369-1380
    • /
    • 2011
  • Most existing mobile distance learning systems are asynchronous ones that allow students to download lecture video and presentation material. However, there are a few synchronous real-time mobile distance learning systems that support slide, annotation, feedback from student, and lecture video and audio at the same time. These live mobile distance learning systems have an advantage of supporting real-time interaction between students and a lecturer thereby making students understand the lecture better. But, they also have a disadvantage in the sense that they don't allow students to experience the past lecture. This problem can be solved by recording and replaying lecture session. So far, there are few mobile distance learning systems that support session recording and replay. This paper presents a synchronous mobile distance learning system that supports video and audio, slide with annotation, and real-time feedback from students, as well as session recording and replay, which is not supported by the existing mobile distance learning systems. The evaluation of the system among students shows that 61.3% of them were satisfied while 3.2% weren't.

Clinicopathologic Features and Difference in Prognosis in Synchronous and Metachronous Hepatic Metastases of Gastric Cancer (동시성 및 이시성 간전이 위암의 임상병리학적 특성 및 예후의 차이)

  • Kim, Jong-Dae;Ha, Tae-Kyung;Kwon, Sung-Joon
    • Journal of Gastric Cancer
    • /
    • v.9 no.3
    • /
    • pp.128-135
    • /
    • 2009
  • Purpose: The aim of this study was to compare synchronous and metachronous hepatic metastases in patients with gastric cancer to determine clinicopathologic features and differences in prognosis as a function of the timing of the metastasis and the treatment modality rendered. Materials and Methods: Sixty-seven patients who were diagnosed with gastric cancer metastatic to the liver and treated at the Hanyang University Hospital between June 1992 and December 2006 were retrospectively analyzed to study the pertinent clinicopathologic features and effect of treatment methods. Results: There was a significant difference with respect to lymphatic (P=0.041) and vascular invasion (P=0.036) in comparing the clinicopathologic features between the patients with synchronous and metachronous hepatic metastases. The 1-year survival rate and median survival time of patients with gastric cancer and liver metastases were 38.9% and 9.2 months in the entire patient cohort, 30.9% and 9.2 months in the synchronous group, and 44.5% and 9.7 months in the metachronus group, respectively (P=0.436). The group of patients undergoing local treatment (such as surgery and radiologic intervention) followed by systemic chemotherapy, the group of patients receiving systemic chemotherapy only, and the untreated group of patients were compared, and there was no difference between the synchronous and metachronous groups. The synchronous and metachronous groups had high survival rates with local treatment. Conclusion: In patients with gastric cancer and liver metastases, there was no difference in prognosis based on the timing of the hepatic metastases. Independent of the timing of hepatic metastasis, aggressive treatment, such as surgery and radiologic intervention, may help improve the prognosis.

  • PDF

PMSM Servo Drive for V-Belt Continuously Variable Transmission System Using Hybrid Recurrent Chebyshev NN Control System

  • Lin, Chih-Hong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.408-421
    • /
    • 2015
  • Because the wheel of V-belt continuously variable transmission (CVT) system driven by permanent magnet synchronous motor (PMSM) has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming job. In order to overcome difficulties for design of the linear controllers, a hybrid recurrent Chebyshev neural network (NN) control system is proposed to control for a PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Chebyshev NN control system consists of an inspector control, a recurrent Chebyshev NN control with adaptive law and a recouped control. Moreover, the online parameters tuning methodology of adaptive law in the recurrent Chebyshev NN can be derived according to the Lyapunov stability theorem and the gradient descent method. Furthermore, the optimal learning rate of the parameters based on discrete-type Lyapunov function is derived to achieve fast convergence. The recurrent Chebyshev NN with fast convergence has the online learning ability to respond to the system's nonlinear and time-varying behaviors. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.

High Speed Control of a Multi-pole Brake Motor Under a Long Current Control Period (다극 브레이크 모터의 긴 전류 제어주기 고속영역 제어)

  • Kim, Dokun;Park, Hongjoo;Park, Kyusung;Kim, Seonhyeong;Lee, Geunho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.137-144
    • /
    • 2015
  • In hybrid or electric vehicles, the hydraulic brake system must be controlled cooperatively with the traction motor for regenerative braking. Recently, a motor driven brake system with a PMSM (Permanent Magnet Synchronous Motor) has replaced conventional vacuum boosters to increase regenerative power. Unlike industry motor controls, additional source codes such as functional safety are essential in automotive applications to meet ISO26262 standards. Therefore, the control logic execution time increases, which also causes an extension of the motor current control period. The increased current control period makes precise motor current control challenging inhigh speed ranges where the motor is driven by high frequency. In this paper, a PWM update strategy and a time delay compensation method are suggested to improve current control and system performance. The proposed methods are experimentally verified.

Magnetic and Thermal Analysis of a Water-cooled Permanent Magnet Linear Synchronous Motor

  • Zhang, Xinmin;Lu, Qinfen;Cheng, Chuanying;Ye, Yunyue
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.1 no.4
    • /
    • pp.498-504
    • /
    • 2012
  • The water-cooled Permanent Magnet Linear Synchronous Motor (PMLSM) has a wide range of applications due to high efficiency, high thrust force density and high acceleration. In order to ensure normal operation and maximum output, both the magnetic and thermal performance are vital to be considered. Based on ANSYS software, electromagnetic and thermal finite-element analysis (FEA) models of a 14-pole, 12-slot water-cooled PMLSM are erected adopting suitable assumptions. Firstly, the thrust force and force ripple with different current densities are calculated. Secondly, the influence of different water flow on the motor heat dissipation and force performance under different operationional conditions are investigated and optimized. Furthermore, for continuous operation, the temperature rise and thrust feature are studied under the rated load 8A, the proper temperature $120^{\circ}C$ and the limited temperature $155^{\circ}C$. Likewise, for short-time operation, the maximum duration is calculated when applied with a certain large current. Similarly, for intermittent operation, load time as well as standstill time are determined with the optimal current to achieve better thrust performance.

Modeling and Analysis of SEIG-STATCOM Systems Based on the Magnitude-Phase Dynamic Method

  • Wang, Haifeng;Wu, Xinzhen;You, Rui;Li, Jia
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.944-953
    • /
    • 2018
  • This paper proposes an analysis method based on the magnitude-phase dynamic theory for isolated power systems with static synchronous compensators (STATCOMs). The stability margin of an isolated power system is greatly reduced when a load is connected, due to the disadvantageous features of the self-excited induction generators (SEIGs). To analyze the control process for system stability and to grasp the dynamic characteristics in different timescales, the relationships between the active/reactive components and the phase/magnitude of the STATCOM output voltage are derived in the natural reference frame based on the magnitude/phase dynamic theory. Then STATCOM equivalent mechanical models in both the voltage time scale and the current time scale are built. The proportional coefficients and the integral coefficients of the control process are converted into damping coefficients, inertia coefficients and stiffness coefficients so that analyzing its controls, dynamic response characteristics as well as impacts on the system operations are easier. The effectiveness of the proposed analysis method is verified by simulation and experimental results.

A Compensation Method for Time Dealy of Full Digital Synchronous Frame Current Regulator of PWM ac Drives (디지털 동기좌표계 전류제어기에서의 시지연을 고려한 PWM 기법)

  • Bae, Bon-Ho;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.244-246
    • /
    • 2001
  • In a full digital implementation of a current regulator, the voltage output is inevitably delayed due to arithmetic calculation and PWM. In case of the synchronous frame current regulator, the time delay is accompanied by the rotation of frame. In some applications in which the ratio of sampling frequency to output frequency is not high enough, such as high power drive or super high-speed drive, it is known that the effect of rotation of frame during the delay time causes phase and magnitude error in the voltage output. The error degrades the dynamic performance and can bring about the instability of current regulator at high speed. It is also intuitively known that advancing the phase of voltage output can mitigate the instability. In this paper, the instability problems are studied analytically and a compensation method for the error has been proposed. By means of computer simulation and complex root locus analysis, comparative study with conventional methods is carried out and the effectiveness of proposed method is verified.

  • PDF