The objective of this study is to apply a hybrid model for estimating solar radiation and investigate their accuracy. A hybrid model is wavelet-based support vector machines (WSVMs). Wavelet decomposition is employed to decompose the solar radiation time series into approximation and detail components. These decomposed time series are then used as inputs of support vector machines (SVMs) modules in the WSVMs model. Results obtained indicate that WSVMs can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois.
Using some interesting convolution, we find kernels recovering the given function f. By a slight change of this convolution, we obtain an identity filter related to the Fourier series in the discrete time domain. We also introduce some techniques to decompose an impulse into several dilated pieces in the discrete domain. The detail examples deal with specific constructions of those decompositions. Also we obtain localized moving averages from a decomposition of an impulse to make hybrid Bollinger bands, that might give various strategies for stock traders.
A reliable streamflow forecasting is essential for flood disaster prevention, reservoir operation, water supply and water resources management. This study proposes a hybrid model for river stage forecasting and investigates its accuracy. The proposed model is the wavelet packet-based artificial neural network(WPANN). Wavelet packet transform(WPT) module in WPANN model is employed to decompose an input time series into approximation and detail components. The decomposed time series are then used as inputs of artificial neural network(ANN) module in WPANN model. Based on model performance indexes, WPANN models are found to produce better efficiency than ANN model. WPANN-sym10 model yields the best performance among all other models. It is found that WPT improves the accuracy of ANN model. The results obtained from this study indicate that the conjunction of WPT and ANN can improve the efficiency of ANN model and can be a potential tool for forecasting river stage more accurately.
The estimation of time-series data is fundamental process in many data analysis cases. However, the unwanted measurement error is usually added to true data, so that the exact estimation depends on efficient method to eliminate the error components. The wavelet transform method nowadays is expected to improve the accuracy of estimation, because it is able to decompose and analyze the data in various resolutions. Therefore, the wavelet based Kalman filter method for the estimation of time-series data is proposed in this paper. The wavelet transform separates the data in accordance with frequency bandwidth, and the detail wavelet coefficient reflects the stochastic process of error components. This property makes it possible to obtain the covariance of measurement error. We attempt the estimation of true data through recursive Kalman filtering algorithm with the obtained covariance value. The procedure is verified with the fundamental example of Brownian walk process.
We present an innovative real-time laser welding monitoring technique employing the correlation analysis of the plasma plume optical emission generated during the process. The plasma optical radiation emitted during Nd:YAG laser welding of S45C steel samples has detected with a Photodiode and analyzed under different process conditions. The discrete DC voltage difference, filter methods and wavelet transform has been used to decompose the optical signal into various discrete series of sequences over different frequency bands. Considering that wavelet analysis can decompose the optical signals, extract the characteristic information of the signals and define the defects location accurately, it can be used to implement process-control of laser welding.
An economic signal in the real world usually reflects complex phenomena. One may have difficulty both extracting and interpreting information embedded in such a signal. A natural way to reduce complexity is to decompose the original signal into several simple components, and then analyze each component. Spectral analysis (Priestley, 1981) provides a tool to analyze such signals under the assumption that the time series is stationary. However when the signal is subject to non-stationary and nonlinear characteristics such as amplitude and frequency modulation along time scale, spectral analysis is not suitable. Huang et al. (1998b, 1999) proposed a data-adaptive decomposition method called empirical mode decomposition and then applied Hilbert spectral analysis to decomposed signals called intrinsic mode function. Huang et al. (1998b, 1999) named this two step procedure the Hilbert-Huang transform(HHT). Because of its robustness in the presence of nonlinearity and non-stationarity, HHT has been used in various fields. In this paper, we discuss the applications of the HHT and demonstrate its promising potential for non-stationary financial time series data provided through a Korean stock price index.
태양활동프록시(proxies)와 지구연평균 기온아노말리 시계열을 이용하여 기후변화에서 태양활동신호를 찾아보았다. 이를 위해 Lomb & Scargle의 피어리드그램(Periodgram)을 이용하여 태양활동프록시와 기온아노말리 시계열을 주기분석하였다. 또한 EMD(Empirical Mode Decomposition)과 MODWR MRA(Maxial Overlap Discrete Wavelet Transform Multi Resolution Analysis)를 적용하여 두 시계열을 성분분해하고 이들 중 비슷한 주기의 특성을 보이는 성분을 비교하였다. 태양활동프록시는 짧의 주기의 파워가 긴 주기의 파워에 비해서 큰 반면 기온아노말리는 긴 주기에서 더 큰 파워를 보였다 EMD에 의한 성분분해 결과는 약40년보다 긴 주기성을 갖는 성분을 분해해 낼 수 없었지만 잔차 성분은 비교할 수 있었다. MRA에 의한 성분분해를 통해 지구연평균 기온아노말리 시계열에서 태양활동의 변화에 의한 신호를 찾아내었다. 1960년부터 2007년까지 기온상승에 대한 태양의 기여도는 39%로 계산되었다. 기후민감성은 출력신호의 진폭에만 관계하여 기후시스템이 간단한 2계미분방정식으로 근사될 수 있는 가능성에 대해 토의하였다.
본 논문은 학술연구자들이 COVID-19 관련 논문의 전체적인 연구 동향을 파악할 수 있도록 한다. KCI 사이트에서 수집한 2020년 1월부터 2022년 7월까지 총 10,599편의 COVID-19 관련 논문 정보를 LDA 토픽 모델링으로 분석한 결과를 제시한다. 또한 학술연구자들이 자신의 관심 연구분야의 토픽을 쉽게 파악할 수 있도록 LDA 토픽 모델링의 결과를 주요 연구 카테고리별로 분석하고, 토픽별로 연구가 많이 이루어지는 세부 연구 카테고리 정보를 분석한다. 학술연구자들이 시간의 흐름에 따른 연구 토픽의 추세(trend)를 파악하는 것은 연구 동향을 파악하는데 매우 중요하다. 따라서 이를 위해 본 논문에서는 시계열 분해를 사용하여 토픽들의 추세(trend)를 분석하여 제시한다.
Purpose The study aims to predict real estate prices by utilizing regional characteristics. Since real estate has the characteristic of immobility, the characteristics of a region have a great influence on the price of real estate. In addition, real estate prices are closely related to economic development and are a major concern for policy makers and investors. Accurate house price forecasting is necessary to prepare for the impact of house price fluctuations. To improve the performance of our predictive models, we applied LSTM, a widely used deep learning technique for predicting time series data. Design/methodology/approach This study used time series data on real estate prices provided by the Ministry of Land, Infrastructure and Transport. For time series data preprocessing, HP filters were applied to decompose trends and SOM was used to cluster regions with similar price directions. To build a real estate price prediction model, SVR and LSTM were applied, and the prices of regions classified into similar clusters by SOM were used as input variables. Findings The clustering results showed that the region of the same cluster was geographically close, and it was possible to confirm the characteristics of being classified as the same cluster even if there was a price level and a similar industry group. As a result of predicting real estate prices in 1, 2, and 3 months, LSTM showed better predictive performance than SVR, and LSTM showed better predictive performance in long-term forecasting 3 months later than in 1-month short-term forecasting.
International Journal of Naval Architecture and Ocean Engineering
/
제7권2호
/
pp.301-314
/
2015
Aiming at accurately distinguishing modeless component and natural vibration mode terms from data series of nonlinear and non-stationary processes, such as Vortex-Induced Vibration (VIV), a new empirical mode decomposition method has been developed in this paper. The key innovation related to this technique concerns the method to decompose modeless component from non-stationary process, characterized by a predetermined 'maximum intrinsic time window' and cubic spline. The introduction of conceptual modeless component eliminates the requirement of using spurious harmonics to represent nonlinear and non-stationary signals and then makes subsequent modal identification more accurate and meaningful. It neither slacks the vibration power of natural modes nor aggrandizes spurious energy of modeless component. The scale of the maximum intrinsic time window has been well designed, avoiding energy aliasing in data processing. Finally, it has been applied to analyze data series of vortex-induced vibration processes. Taking advantage of this newly introduced empirical decomposition method and mode identification technique, the vibration analysis about vortex-induced vibration becomes more meaningful.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.