• Title/Summary/Keyword: Time Determination

Search Result 2,982, Processing Time 0.032 seconds

Measurement of Shunt Amount Using Radionuclide Angiocardiography: Accuracy According to Level of Shunt and Associated Lesion (방사성 동위원소 심혈관 조영술을 이용한 단락량 측정법: 정확성에 영향을 미치는 인자)

  • Kim, Yang-Min
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.4
    • /
    • pp.200-204
    • /
    • 2006
  • Purpose: Determination of pulmonary to systemic blood flow ratio (QP/QS) is important for the management of patients with left-to-right shunt. This study was performed to assess the agreement of Qp/Qs ratio using the radionuclide method and oxymetry, to investigate the factors influencing the agreement, and to know how interchangeable the results of each technique. Materials and Methods: We compared the Qp/Qs measured by single-pass radionuclide angiocardiography and oxymetry during catheterization in 207 patients who underwent both studies. In radionuclide method, Qp/Qs was calculated from the pulmonary time-activity curves using a gamma variate fit. The correlation and Bland-Altman analysis were performed according to the levels of shunt and associated lesions. Results: The mean Qp/Qs was $1.83{\pm}0.50$ by radionuclide, and $1.74{\pm}0.51$ by oxymetry. The overall correlation coefficient was 0.86(p<0.001), and Bland-Altman range of agreement encompassing 4SD was 1.05. For atrial septal defect, ventricular septal defect, patent ductus arteriosus, tricuspid and mitral insufficiency, the correlation coefficient was 0.78, 0.90, 0.84, 0.63 and 0.44, and Bland-Altman range was 1.51, 0.74, 0.96, 1.57, and 1.50, respectively. Conclusion: There is good agreement but wide variance between the Qp/Qs ratios by radionuclide method and oxymetry. Associated atrioventricular valvar insufficiency decreases the correlation coefficient and widens the variance. Wide overall variance suggests that Qp/Qs measurements by two techniques should not be used interchangeably.

Health Status and the Quality of Life of the Rural Elderly (건강수준이 노인의 삶의 질에 미치는 영향)

  • Choe, Heon;Kim, Han-Joong;Jin, Ki-Nam;Joo, Kyung-Sik;Lee, Kyu-Sik;Sohn, Myung-Sei
    • Health Policy and Management
    • /
    • v.8 no.2
    • /
    • pp.149-165
    • /
    • 1998
  • The purpose of this study is to examine the effect of the health status on the quality of life of the rural elderly, and to examine the conditional effect of socialsupport for that influence. 'Quality of life' used in this study was defined by unidimensional approach. The data were collected by conducting individual interviews with 296 rural elderly people aged 60 and the above who were living in one township of Kangwondo, between the time period of October and November 1995. The main findings are as follows: 1. Hierarchical regression analyses were carried out to examine the relative contribution of three set of variables on the quality of life. The first step, which included sociodemographic factors showed that the coefficient of determination (R$^{2}$) was 8% and income was a statisically significant variable. The second step, by adding health related factors, revealed that the R$^{2}$ was increased to 34% by 26% point and the degree of health recognition was the statistically significant variable. The third step, by projecting additionall social support related variables revealed that the R$^{2}$ was 42% 2. The conditional effect of social support was analyzed to examine the influence the health status has on the quality of life. The results are as follows: 1) The IADL and the degree of social contact interacted, resulting in that the higher degree of social contact boosted the stronger effect of IADL. 2) The effect of subjective health recognition on the quality of life is depended upon degree of family ontact. 3) The effect of eyesight on the quality of life is depended upon degree of satisfaction in social relation. The lower the degree of social support was, the bigger the influence of health related variables affecting quality of life became. This study explains that health status is a major factor in predicting the quality of life of the aged. Particularly the subjective health recognition was an important factor as the perception of quality of life.

  • PDF

Automatic Detection of Malfunctioning Photovoltaic Modules Using Unmanned Aerial Vehicle Thermal Infrared Images

  • Kim, Dusik;Youn, Junhee;Kim, Changyoon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.6
    • /
    • pp.619-627
    • /
    • 2016
  • Cells of a PV (photovoltaic) module can suffer defects due to various causes resulting in a loss of power output. As a malfunctioning cell has a higher temperature than adjacent normal cells, it can be easily detected with a thermal infrared sensor. A conventional method of PV cell inspection is to use a hand-held infrared sensor for visual inspection. The main disadvantages of this method, when applied to a large-scale PV power plant, are that it is time-consuming and costly. This paper presents an algorithm for automatically detecting defective PV panels using images captured with a thermal imaging camera from an UAV (unmanned aerial vehicle). The proposed algorithm uses statistical analysis of thermal intensity (surface temperature) characteristics of each PV module to verify the mean intensity and standard deviation of each panel as parameters for fault diagnosis. One of the characteristics of thermal infrared imaging is that the larger the distance between sensor and target, the lower the measured temperature of the object. Consequently, a global detection rule using the mean intensity of all panels in the fault detection algorithm is not applicable. Therefore, a local detection rule was applied to automatically detect defective panels using the mean intensity and standard deviation range of each panel by array. The performance of the proposed algorithm was tested on three sample images; this verified a detection accuracy of defective panels of 97% or higher. In addition, as the proposed algorithm can adjust the range of threshold values for judging malfunction at the array level, the local detection rule is considered better suited for highly sensitive fault detection compared to a global detection rule. In this study, we used a panel area extraction method that we previously developed; fault detection accuracy would be improved if panel area extraction from images was more precise. Furthermore, the proposed algorithm contributes to the development of a maintenance and repair system for large-scale PV power plants, in combination with a geo-referencing algorithm for accurate determination of panel locations using sensor-based orientation parameters and photogrammetry from ground control points.

Methodological Research on the Instruments of Fatty Acids Determination (지방산의 기기 측정 방법에 관한 연구)

  • 박선미;안명수
    • Korean journal of food and cookery science
    • /
    • v.7 no.1
    • /
    • pp.45-51
    • /
    • 1991
  • In this study, several standard fatty acids were analyzed by three analysis instruments. And also, for the two kinds of soybean oils, fatty acids compositions were determined by three instruments. The results were obtained as follows: 1. In the case of Gas Chromatography (GC), standard fatty acids (Myristic, Stearic, Linoleic, Linolenic, Arachidonic acid) were determined with high reproducibility, but oleic acid/elaidic acid were not seperated. By Capillary Gas Chromatography (CGC), most of standard fatty acids were determined with very high reproducibility than saturated fatty acids, and palmitic acid/oleic acid were not seperated. 2. In the analytical ability of cis-trans fatty acids isomer (oleic acid/elaidic acid), CGC was shown better analytical ability of geometrical isomer than HPLC. Oleic acid/elaidic acid were not seperated by packed column (15% DEGS). The rquire time for standard fatty acids analysis was as follows; GC, 7.21 min., CGC, 9.84 min., HPLC, 24.48 min. 3. The major compositions of fatty acids of each soybean oil (CSOY; refined, DSOY; unrefined) by GC and CGC were linoleic acid, oleic acid, palmitic acid, linolenic acid and stearic acid. But in the case of HPLC, palmitic acid/oleic acid were not seperated. Analytical ability of three instruments on fatty acids composition in each soybean oil was same trend as in the standard fatty acids mixture.

  • PDF

A Base Study on the Construction of Optimal Operating Systems using the Optimal Traffic Intensity in the Container Terminal (최적교통강도를 이용한 컨테이너 터미널의 최적 운영체계 구축에 관한 기초적 연구)

  • Lee, Sang-Yong;Jung, Hun-Young
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.3 s.81
    • /
    • pp.85-94
    • /
    • 2005
  • The scale and operating conditions of logistical systems very sensitively varies according to the variation of traffic intensity that is affected by the arrival characteristics of trucks and the attributes of loading/unloading services in logistics facilities. More exactly, logistics costs are incurred according to variations of traffic intensity. which are intimately linked with in a given time period. Also. although traffic intensity changes minutely, the range of cost variation is wide. Nevertheless, with regard to operating logistics systems, the existing studies make no attempt to analyze these factors. Therefore, it was the purpose of this study to determine the optimal traffic intensity to minimize excessive logistics costs resulting from the generation of unnecessary costs such as waiting costs and overcosts in operating a facility. For the purposes of this analysis. a determination model of optimal traffic intensity was constructed according to queuing theory. The inflow/outflow conditions of trucks and the terminal operational conditions were collected from an off-dock container terminal in Busan. On the basis of this data. the optimal traffic intensity that could off-set excessive waiting and operating costs was determined quantitatively. Also. using the optimal traffic intensity to be determined. we consider the improvements of operating system in the logistics facilities.

Evaluation of The Highway Design Speed Determination Process Using Case Studies (Reclassifying Functions and Terrain Types) (사례분석을 통한 도로설계속도 결정방법론 적용성 평가 (기능 재분류와 지형특성 이용))

  • Sim, Gwan-Bo;Choe, Jae-Seong
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.2 s.88
    • /
    • pp.101-112
    • /
    • 2006
  • Currently, highway design speed is determined by considering highway function, area type, and terrain type. Sometime it is pointed out that determining a reasonable design speed which is both efficient and safe is not an easy task and that Practicing engineers often select an unsuitable design speed on purpose, capitalizing on some ambiguous and discretionary expressions in describing the highway design speed. This undesirable Problem is arising mostly due to the fact, that the current geometric design standard fails to include rolling terrain type and can not reflect the whole characteristics of land use patterns adjacent to the design highway route. A recent research was Published considering this problem and it attempted to improve the highway design speed determining process. In this research Project, tn see the effects of this recently developed procedure, a new and reduced design speed was calculated based on the new Procedure and subsequently another highway design route was selected. The travel time. construction cost. and the expected degree of safety associated with the new route were assessed to be compared with the ones with the existing procedure. As a result. it was found that the new procedure was successful in reflecting the localities such as terrain type and area type into better determining highway design speed, eliminating much of highway engineers' discretion when applying engineering judgments. Also the new Procedure is keen to produce a more economical highway project. In other words, despite of producing reduced amount of user benefits accrued, in the new highway route, the construction cost has been cut significantly leading to higher values in B/C. NPV, and IRR. Also EMME-II output, which Provided the link assigned volumes, rendered only a slightly reduced Levels of Service along surrounding links in the study network. This reduction was believed to occur because of lower design speed and it had been expected from the beginning.

Judgment on the Criminal Responsibility of Perpetrators with Mental Disorders and Their Mental Examination (정신장애 범죄인의 책임능력 판단과 정신감정)

  • Choi, Min-Young
    • The Korean Society of Law and Medicine
    • /
    • v.20 no.2
    • /
    • pp.83-107
    • /
    • 2019
  • This article focuses on §10 of Criminal Act of the Republic of Korea to discuss how to determine criminal responsibility of a perpetrator suffering from mental disorders, while reviewing existing process and standards of mental examination at each stage of the criminal procedure as well as exploring suggestions regarding how they should be complied. The determination of the sanity or criminal responsibility of the mentally ill as defined in the §10 of Criminal Act, by its nature, cannot be approached with a traditional, clear-cut dichotomy of biology by medical practitioner and psychology·normative science by lawyer. Looking into the actual procedure of determining mental and physical disorder with special consideration of mental illness reveals the inevitability of collaboration between lawyers and psychiatrists. In the meantime, the process and standards of mental examination at each stage of the criminal procedure must be definitive and clear. First of all, during the investigation stage, examination prior to prosecution should be more actively encouraged, considering that judging sanity of the perpetrator at the time of committing a criminal act is important. During the trial stage, the mandatory examination must be conducted depending on the sensitivity and gravity of the case. Next, medical examination to determine criminal responsibility and the one to order treatment and custody must be separately conducted in order to properly execute medical treatment and custody. Obligatory mental examination could be considered both during the stage of request for and execution of the treatment and custody. Lastly, the procedure of examination and format of examination documents need to be standardized for better objectivity and reliability.

Applied-mineralogical Characterization for the Quick-lime Manufactured from Fine-grained Domestic Limestones (국내산 세립질 석회석으로부터 제조된 생석회에 대한 응용광물학적 특성 평가)

  • Noh, Jin-Hwan;Lee, Hyun-Chul
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.261-277
    • /
    • 2009
  • This study is aimed to emphasize the significance of ore selection in lime manufacturing through the evaluation of applied-mineralogical impact factors of crude ores controlling calcination characteristics for some domestic limestones used currently for lime manufacturing. To do this work, systematic characterization and determination were carried out for the limestone ores and their calcination products in a fixed calcining condition (target temperature: $1000^{\circ}C$, retention time: 30 minutes, 2, 4, 10, 16 hours), and the results were correlated and discussed. Selected high-Ca limestones in this study are as much as > 98 wt%, but they are somewhat diverse in crystallinity, texture, and impurity composition. Synthesized quicklimes are varied depending on such a difference in ore characters. The Pungchon limestone has relatively very low calcination rate, and the limestones from the Gabsan formation and the Jeongseon formation exhibit good quality in calcination rate and decrepitation. Among these samples, the limestone ore from the Jeongseon formation is evaluated to be the best for crude ore in manufacturing of highly-reactive quicklime. In addition, it is characteristic that the Gabsan limestone comparative rich in Fe-bearing mineral such as pyrite and goethite is more conspicuous in sintering effect.

Evaluation and Comparison of Meteorological Drought Index using Multi-satellite Based Precipitation Products in East Asia (다중 위성영상 기반 강우자료를 활용한 동아시아 지역의 기상학적 가뭄지수 비교 분석)

  • Mun, Young-Sik;Nam, Won-Ho;Kim, Taegon;Hong, Eun-Mi;Sur, Chanyang
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.83-93
    • /
    • 2020
  • East Asia, which includes China, Japan, Korea, and Mongolia, is highly impacted by hydroclimate extremes such drought, flood, and typhoon recent year. In 2017, more than 18.5 million hectares of crops have been damaged in China, and Korea has suffered economic losses as a result of severe drought. Satellite-derived rainfall products are becoming more accurate as space and time resolution become increasingly higher, and provide an alternative means of estimating ground-based rainfall. In this study, we verified the availability of rainfall products by comparing widely used satellite images such as Climate Hazards Groups InfraRed Precipitation with Station (CHIRPS), Global Precipitation Climatology Centre (GPCC), and Precipitation Estimation From Remotely Sensed Information Using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) with ground stations in East Asia. Also, the satellite-based rainfall products were used to calculate the Standardized Precipitation Index (SPI). The temporal resolution is based on monthly images and compared with the past 30 years data from 1989 to 2018. The comparison between rainfall data based on each satellite image products and the data from weather station-based weather data was shown by the coefficient of determination and showed more than 0.9. Each satellite-based rainfall data was used for each grid and applied to East Asia and South Korea. As a result of SPI analysis, the RMSE values of CHIRPS were 0.57, 0.53 and 0.47, and the MAE values of 0.46, 0.43 and 0.37 were better than other satellite products. This satellite-derived rainfall estimates offers important advantages in terms of spatial coverage, timeliness and cost efficiency compared to analysis for drought assessment with ground stations.

Rapid Analytical Method of Volatile- and Semivolatile Organic Compounds in Water and their Monitoring in Water Treatment Plants (물 시료 중 휘발성 및 반휘발성 유기물질들의 빠른 분석법 및 정수처리 단계별 모니터링)

  • Shin, Ho-Sang;Ahn, Hye-Sil
    • Analytical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.240-250
    • /
    • 2004
  • A gas chromatography-mass spectrometric (GC-MS) assay method was developed for the rapid and sensitive determination of volatile- and semivolatile organic compounds in water. Two hundreds mL of water sample was extracted in a 250 mL separatory funnel with 1 ml of pentane at pH 6.5. Fluorobenzene and 1,2-dichlorobenzene-d4 as internal standards were added to water sample and the solution was mechanically shaken for 5 min and analyzed by GC-MS (selected ion monitoring) without more any concentration or purification steps. The peaks had good chromatographic properties and the extraction of these compounds from water also gave relatively high recoveries with small variations. The range of detection limits of the assay was 0.5-10 ng/L. Turnaround time for up to about 40 samples was one day. This method is simple, convenient, and can be learned easily by relatively inexperienced personnel. This method was used to analyze 15 volatile- and semivolatile organic compounds in water of a Lake, and raw and treated water from three Water Treatment Plants in Korea. As the analytical results, benzene, toluene, xylene, isopropylbenzene, 1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, naphthalene and 2,4,6-trichlorophenol were detected at concentrations of up to 0.4, 1.9, 1.3, 0.2, 1.8, 13.0, 1.7 and $1.1{\mu}g/L$, respectively. But chlorobenzene, trichloroethylene, tetrachloroethylene, ethylbenzene, n-butylbenzene and dibromochloropropane levels during that period were not significant. The removal effect of the compounds in three Water Treatment Plants was calculated. The compounds studied were generally removed during conventional water treatment, especially during the active carbon filtration.