• Title/Summary/Keyword: Time Dependent

Search Result 6,963, Processing Time 0.032 seconds

On the use of time-dependent success criteria within risk-informed analyses. Application to LONF-ATWS sequences in PWR reactors

  • Jorge Sanchez-Torrijos;Cesar Queral;Carlos Paris;Maria Jose Rebollo;Miguel Sanchez-Perea;Jose Maria Posada
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4601-4619
    • /
    • 2022
  • The classical Probabilistic Safety Analysis (PSA) does not include any time dependence explicitly. However, the success criteria (SC) could evolve during the cycle for some initiating events. In that sense, there is a type of sequence in which this time-dependency is quite important, the family of Anticipated Transient without Scram (ATWS) sequences in Pressurized Water Reactors. Therefore, a new risk-informed approach is proposed in this paper, which makes it possible to obtain the time-dependent SC evolution of the safety functions affected by the Moderator Temperature Coefficient (MTC) value. Then, the evolution of the ATWS conditional core damage probability (CCDP) could be obtained using a PSA model. To quantify the CCDP, the average values of the time-dependent failure probabilities must be computed. Finally, the comparison between the CCDP obtained through the application of the classical PSA approach and the new one makes it possible to quantify the impact of time-dependence on the SC of the headers that this new risk-informed ATWS approach can provide.

Measurement of time-dependent sheath for the negative voltage pulse with a finite rise time (유한 오름 시간을 갖는 음전위 펄스에서 시변환 플라즈마 덮개의 거동 연구)

  • 김곤호;김영우;김건우;한승희;홍문표
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.3B
    • /
    • pp.361-367
    • /
    • 1999
  • It was observed that the time-dependent sheath which was formed around the planar target biased by negatively voltage pulse with a finite rise time in the plasma source ion implantation. F\Results show that the time-dependent sheath consisted of two parts: the ion matrix sheath development during the pulse rise time and the dynamic sheath motion after attaining the full pulse. The ion matrix sheath development which is in proportion to square root of the pulse time and the pulse rise rate over the plasma density but independent of the ion mass. The dynamic sheath propagates with approximately the ion sound speed.

  • PDF

THE SOJOURN TIME AND RELATED CHARACTERISTICS OF THE AGE-DEPENDENT BRANCHING PROCESS

  • Kumar, B.-Krishba;Vijayakumar, A.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.157-172
    • /
    • 2004
  • An age-dependent branching process where disasters occur as a renewal process leading to annihilation or survival of all the cells, is considered. For such a process, the total mean sojourn time of all the cells in the system is analysed using the regeneration point technique. The mean number of cells which die in time t and its asymptotic behaviour are discussed. When the disasters arrival as a Poisson process and the lifetime of the cells follows exponential distribution, elegant inter- relationships are found among the means of (i) the total number of cells which die in time t (ii) the total sojourn time of all cells in the system upto time t and (iii) the number of living cells at time t. Some of the existing results are deduced as special cases for related processes.

Friction of a Brownian Particle in a Lennard-Jones Solvent: A Molecular Dynamics Simulation Study

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.959-964
    • /
    • 2010
  • In this work, equilibrium molecular dynamics (MD) simulations in a microcanonical ensemble are performed to evaluate the friction coefficient of a Brownian particle (BP) in a Lennard-Jones (LJ) solvent. The friction coefficients are determined from the time dependent friction coefficients and the momentum autocorrelation functions of the BP with its infinite mass at various ratios of LJ size parameters of the BP and solvent, ${\sigma}_B/{\sigma}_s$. The determination of the friction coefficients from the decay rates of the momentum autocorrelation functions and from the slopes of the time dependent friction coefficients is difficult due to the fast decay rates of the correlation functions in the momentum-conserved MD simulation and due to the scaling of the slope as 1/N (N: the number of the solvent particle), respectively. On the other hand, the friction coefficient can be determined correctly from the time dependent friction coefficient by measuring the extrapolation of its long time decay to t=0 and also from the decay rate of the momentum autocorrelation function, which is obtained by time integration of the time dependent friction coefficient. It is found that while the friction coefficient increases quadratically with the ratio of ${\sigma}_B/{\sigma}_s$ for all ${\sigma}_B$, for a given ${\sigma}_s$ the friction coefficient increases linearly with ${\sigma}_B$.

Real-time hybrid testing using model-based delay compensation

  • Carrion, Juan E.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.809-828
    • /
    • 2008
  • Real-time hybrid testing is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with time-dependent components. Real-time hybrid testing is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for time delays and actuator time lag is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid testing in which time delay/lag compensation is implemented using model-based response prediction. The efficacy of the proposed strategy is verified by conducting substructure real-time hybrid testing of a steel frame under earthquake loads. For the initial set of experiments, a specimen with linear-elastic behavior is used. Experimental results agree well with the analytical solution and show that the proposed approach and testing system are capable of achieving a time-scale expansion factor of one (i.e., real time). Additionally, the proposed method allows accurate testing of structures with larger frequencies than when using conventional time delay compensation methods, thus extending the capabilities of the real-time hybrid testing technique. The method is then used to test a structure with a rate-dependent energy dissipation device, a magnetorheological damper. Results show good agreement with the predicted responses, demonstrating the effectiveness of the method to test rate-dependent components.

EXISTENCE OF POSITIVE T-PERIODIC SOLUTIONS OF RATIO-DEPENDENT PREDATOR-PREY SYSTEMS

  • Ryu, Kimun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.27-35
    • /
    • 2021
  • We study the existence of positive T-periodic solutions of ratio-dependent predator-prey systems with time periodic and spatially dependent coefficients. The fixed point theorem by H. Amann is used to obtain necessary and sufficient conditions for the existence of positive T-periodic solutions.

Robust Stabilization of Uncertain Linear Systems with Time-delay

  • Moon, Young-Soo;Park, Poo-Gyeon;Kwon, Wook-Hyun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.128-133
    • /
    • 1999
  • This paper presents a new delay-dependent robust stabilization condition for uncertain time-delay systems. An algorithm involving convex optimization is proposed to compute a suboptimal upper bound of the delay such that the system can be stabilized by the controller for all admissible uncertainties. It is illustrated by numerical examples that the proposed delay-dependent controller can be less conservative than previous results. It is also shown that the proposed delay-dependent controller can even capture the delay-independent stability of the system, which is not possible with existing delay-dependent results.

  • PDF

Determination of the Forming Limit Strain of Sheet Metals by the Time-dependent Method (시간의존법에 의한 금속판재 성형한계변형률의 결정)

  • Kim, S.G.;Oh, T.H.;Kim, J.D.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.24 no.5
    • /
    • pp.361-367
    • /
    • 2015
  • The forming limit diagram (FLD) is the most commonly used tool for evaluating of sheet metal formability in the manufacturing field as well as the finite element analysis (FEA)-based design process. Determination of the forming limits is considerably influenced by testing/measuring machines, techniques and conditions. These influences may cause a large scatter in FLD from laboratory to laboratory. Scatter is especially true when the ‘position-dependent method’, as is specified in most national and international standards, is used. In the current study a new ‘time-dependent method’ is proposed, which is to determine the forming limit strains more accurately and reasonably when producing a FLD from experimental data. This method is based on continual strain measurement during the test. The results are compared to those from the existing standardized methods.

An Estimation of the Temperature-dependent Thermal Conductivity for Hybrid-fiber Reinforced Shield Tunnel Lining (하이브리드 섬유보강 쉴드터널 라이닝의 온도의존적 열전도도 추정)

  • Lee, Chang Soo;Kim, Yong Hyok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.99-106
    • /
    • 2012
  • This study presents estimation method of temperature-dependent thermal conductivity by using solution of inverse heat conduction problem. Time and depth temperature distribution data from full-scale fire test were used for estimating temperature-dependent thermal conductivity on hybrid-fiber reinforced shield tunnel lining. At short heating time, estimated thermal conductivity sharply decreased within $100^{\circ}C$. On the other hand, it reflected thermal properties of concrete and effect of steel fiber at heating time of measured maximum heating temperature. Thus arbitrary time should be determined to estimate temperature-dependent thermal conductivity in time zone of measured maximum heating temperature. Estimated temperature-dependent thermal conductivity is similar to results of other study.

Mean Square Response Analysis of the Tall Building to Hazard Fluctuating Wind Loads (재난변동풍하중을 받는 고층건물의 평균자승응해석)

  • Oh, Jong Seop;Hwang, Eui Jin;Ryu, Ji Hyeob
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • Based on random vibration theory, a procedure for calculating the dynamic response of the tall building to time-dependent random excitation is developed. In this paper, the fluctuating along- wind load is assumed as time-dependent random process described by the time-independent random process with deterministic function during a short duration of time. By deterministic function A(t)=1-exp($-{\beta}t$), the absolute value square of oscillatory function is represented from author's studies. The time-dependent random response spectral density is represented by using the absolute value square of oscillatory function and equivalent wind load spectrum of Solari. Especially, dynamic mean square response of the tall building subjected to fluctuating wind loads was derived as analysis function by the Cauchy's Integral Formula and Residue Theorem. As analysis examples, there were compared the numerical integral analytic results with the analysis fun. results by dynamic properties of the tall uilding.