• 제목/요약/키워드: Time Delay System

검색결과 2,720건 처리시간 0.032초

COMPLETE CONTROLLABILITY OF SEMILINEAR STOCHASTIC INTEGRO-DIFFERENTIAL EQUATIONS WITH INFINITE DELAY AND POISSON JUMPS

  • D.N., CHALISHAJAR;A., ANGURAJ;K., RAVIKUMAR;K., MALAR
    • Journal of Applied and Pure Mathematics
    • /
    • 제4권5_6호
    • /
    • pp.299-315
    • /
    • 2022
  • This manuscript deals with the exact (complete) controllability of semilinear stochastic differential equations with infinite delay and Poisson jumps utilizing some basic and readily verified conditions. The results are obtained by using fixed-point approach and by using advance phase space definition for infinite delay part. We have used the axiomatic definition of the phase space in terms of stochastic process to consider the time delay of the system. An infinite delay along with the Poisson jump is the new investigation for the given stochastic system. An example is given to illustrate the effectiveness of the results.

가변 부하를 받는 전기 기계 시스템의 강인 제어 (Robust control of Electric Machine System Subject to Variable Load)

  • 송재복
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.697-702
    • /
    • 1997
  • Control system of electric machine systems is often required to provide the good control performance even in the presence of various variable loads. In this study, time delay control technique is adopted to overcome such variable loads. Also, in this research a new approach of avoiding saturation by varying the reference model for the time delay control based systems subject to the step changes in reference inputs. These schemes are verified by applications to the position controls of the AC servo motor system and the engine throttle actuator.

  • PDF

Real-time hybrid testing using model-based delay compensation

  • Carrion, Juan E.;Spencer, B.F. Jr.
    • Smart Structures and Systems
    • /
    • 제4권6호
    • /
    • pp.809-828
    • /
    • 2008
  • Real-time hybrid testing is an attractive method to evaluate the response of structures under earthquake loads. The method is a variation of the pseudodynamic testing technique in which the experiment is executed in real time, thus allowing investigation of structural systems with time-dependent components. Real-time hybrid testing is challenging because it requires performance of all calculations, application of displacements, and acquisition of measured forces, within a very small increment of time. Furthermore, unless appropriate compensation for time delays and actuator time lag is implemented, stability problems are likely to occur during the experiment. This paper presents an approach for real-time hybrid testing in which time delay/lag compensation is implemented using model-based response prediction. The efficacy of the proposed strategy is verified by conducting substructure real-time hybrid testing of a steel frame under earthquake loads. For the initial set of experiments, a specimen with linear-elastic behavior is used. Experimental results agree well with the analytical solution and show that the proposed approach and testing system are capable of achieving a time-scale expansion factor of one (i.e., real time). Additionally, the proposed method allows accurate testing of structures with larger frequencies than when using conventional time delay compensation methods, thus extending the capabilities of the real-time hybrid testing technique. The method is then used to test a structure with a rate-dependent energy dissipation device, a magnetorheological damper. Results show good agreement with the predicted responses, demonstrating the effectiveness of the method to test rate-dependent components.

버스정보시스템(BIS) 운행데이터를 이용한 실시간 지체시간 산정모형 구축 (A Study on the Estimate Real Time Delay Model using BIS Data)

  • 이영우;권혁준
    • 한국ITS학회 논문지
    • /
    • 제10권5호
    • /
    • pp.14-22
    • /
    • 2011
  • 본 연구는 버스정보시스템(BIS)의 운행데이터를 이용하여 신호교차로에서의 지체시간을 추정하기 위한 연구이다. 기존의 버스시스템에 첨단정보통신 기술을 접목한 BIS는 많은 지방자치단체에서 구축하여 운영 중에 있다. 그러나 기존에 구축된 BIS의 운영을 통해 실시간으로 수집되고 있는 운행데이터의 활용은 활발히 이루어지지 못하고 있다. 본 연구에서는 BIS 운행데이터를 이용하여 실시간으로 지체시간을 산정하여 도시교통관리, 교통정보를 제공에 활용하기 위한 기초적인 연구를 수행하고자 하였다. VISSIM 5.20을 활용하여 시뮬레이션 모형을 구축하였으며 버스정류장에서의 서비스 시간을 제외한 버스 통행시간과 일반차량 지체시간 간의 상관관계가 유의한 것으로 분석되어 거시적 통계모형인 회귀모형으로 구축하여 분석한 결과 직선회귀모형의 결정계수가 0.826으로 가장 높게 나타났다. 구축된 모형을 통계적으로 검증하기 위하여 현장조사 값과 모형추정 값으로 T-test를 실시한 결과 95% 신뢰수준에서 통계적으로 유의한 것으로 분석되었다.

Mobility Improvement of an Internet-based Robot System Using the Position Prediction Simulator

  • Lee Kang Hee;Kim Soo Hyun;Kwak Yoon Keun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.29-36
    • /
    • 2005
  • With the rapid growth of the Internet, the Internet-based robot has been realized by connecting off-line robot to the Internet. However, because the Internet is often irregular and unreliable, the varying time delay in data transmission is a significant problem for the construction of the Internet-based robot system. Thus, this paper is concerned with the development of an Internet-based robot system, which is insensitive to the Internet time delay. For this purpose, the PPS (Position Prediction Simulator) is suggested and implemented on the system. The PPS consists of two parts : the robot position prediction part and the projective virtual scene part. In the robot position prediction part, the robot position is predicted for more accurate operation of the mobile robot, based on the time at which the user's command reaches the robot system. The projective virtual scene part shows the 3D visual information of a remote site, which is obtained through image processing and position prediction. For the verification of this proposed PPS, the robot was moved to follow the planned path under the various network traffic conditions. The simulation and experimental results showed that the path error of the robot motion could be reduced using the developed PPS.

OTFS(Orthogonal Time Frequency Space) 변조를 사용하는 MIMO(Multiple Input Multiple Output) 시스템 설계와 성능 평가 (Design and Performance Evaluation of MIMO(Multiple Input Multiple Output) System Using OTFS(Orthogonal Time Frequency Space) Modulation)

  • 안창영;유흥균
    • 한국전자파학회논문지
    • /
    • 제28권6호
    • /
    • pp.444-451
    • /
    • 2017
  • 본 논문에서는 고속 데이터 송수신을 위해 2차원 iDFT(inverse Discrete Fourier Transform) 및 DFT(Discrete Fourier Transform) 연산을 이용하여 Delay-Doppler 스프레딩 영향을 고속 수신 처리하는 OTFS(Orthogonal Time Frequency Space) 변조 시스템과 OTFS-MIMO(Multiple Input Multiple Output) 시스템을 평가하고 분석한다. 특히 OTFS 변조를 사용하는 MIMO 시스템은 높은 Doppler 효과가 존재하는 채널에서도 시스템의 용량 저하가 거의 없이 모든 데이터 스트림을 전송할 수 있다. 시뮬레이션 결과, $1{\times}1$ OTFS 변조 시스템의 전송률은 $2{\times}2$ OTFS-MIMO 시스템에서 한 스트림의 전송률과 유사함을 확인할 수 있다. 즉, $2{\times}2$ OTFS-MIMO 시스템은 높은 Delay-Doppler 영향이 존재하는 환경에서도 $1{\times}1$ OTFS 변조 시스템과 비교하여 거의 2배의 전송률을 확보할 수 있음을 확인할 수 있다.

수중유도무기의 운용가용도 향상을 위한 군수지원시스템의 체계적 개발에 관한 연구 (A Study on Systematic Development of Military Logistic Support System to Improve the Operational Availability for Underwater Guided Weapon)

  • 신주환;윤원영
    • 품질경영학회지
    • /
    • 제33권4호
    • /
    • pp.75-87
    • /
    • 2005
  • Generally speaking, weapon system is defined as a combination of primary system and support system which are evaluated by capability and operational availability respectively. Recently comparison of total life cycle cost shows that logistic support system is proved to be more important than primary system. However, until now systematic approach to support system development has not been applied in the area of developing support system. We need to construct a universal metric for effectiveness of logistic support system and to cut out whatever activities or support elements which do not contribute to the metric. This paper describes a new approach based on system engineering approach to logistic support system and also classifies five factors of failure, stock-out frequency, administrative delay time, active repair time and logistic delay time that have influence on operational availability of logistic support system.

CAN기반 분산 제어시스템의 종단 간 지연시간 분석과 협조 스케줄링 알고리즘 개발 (Development of Coordinated Scheduling Algorithm and End-to-end Delay Analysis for CAN-based Distributed Control Systems)

  • 이희배;김홍열;김대원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권7호
    • /
    • pp.501-508
    • /
    • 2004
  • In this paper, a coordinated scheduling algorithm is proposed to reduce end-to-end delay in distributed control of systems. For the algorithm, the analysis of practical end-to-end delay in the worst case is performed priory with considering implementation of the systems. The end-to-end delay is composed of the delay caused by multi-task scheduling of operating systems, the delay caused by network communications, and the delay caused by asynchronous timing between operating systems and network communications. Through some simulation tests based on CAN(Controller Area Network), the proposed worst case end-to-end delay analysis is validated. Through the simulation tests, it is also shown that a real-time distributed control system designed to existing worst case delay cannot guarantee end-to-end time constraints. With the analysis, a coordinated scheduling algorithm is proposed here. The coordinated scheduling algorithm is focused on the reduction of the delay caused by asynchronous timing between operating systems and network communications. Online deadline assignment strategy is proposed for the scheduling. The performance enhancement of the distributed control systems by the scheduling algorithm is shown through simulation tests.

Sliding Mode Control for Robust Stabilization of Uncertain Input-Delay Systems

  • Roh, Young-Hoon;Oh, Jun-Ho
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제2권2호
    • /
    • pp.98-103
    • /
    • 2000
  • This paper is concerned with a delay-dependent sliding mode scheme for the robust stabilization of input-delay systems with bounded unknown uncertainties. A sliding surface based ona predictor is proposed to minimize the effect of the input delay. Then, a robust control law is derived to ensure the existence of a sliding mode on the surface. In input-delay systems, uncertainties given during te delayed time are not directly controlled by the switching control because of causality prolem of them. They can influence the stability of the system in the sliding mode. Hence, a delay-dependent stability analysis for reduced order dynamics is employed to estimate maximum delay bound such that the system is globally asymptotically stable in the sliding mode. A numerical example is given to illustrate the design procedure.

  • PDF