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Sliding Mode Control for Robust Stabilization of
Uncertain Input-Delay Systems

Young-Hoon Roh and Jun-Ho Oh

Abstract: This paper is concerned with a delay-dependent sliding mode scheme for the robust stabilization of input-delay systems
with bounded unknown uncertainties. A sliding surface based on a predictor is proposed to minimize the effect of the input delay.
Then, a robust control law is derived to ensure the existence of a sliding mode on the surface. In input-delay systems, uncertainties
given during the delayed time are not directly controlled by the switching control because of causality problem of them. They can
influence the stability of the system in the sliding mode. Hence, a delay-dependent stability analysis for reduced order dynamics is
employed to estimate maximum delay bound such that the system is globally asymptotically stable in the sliding mode. A numerical

example is given to illustrate the design procedure.
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L Introduction

Time delays can be found in various engineering systems
such as chemical processes, pneumatic/hydraulic systems,
biological systems, and economic systems. These delays cab
be frequently a source of instability. Time delay also limits the
achievable bandwidth and the use of high gain feedback. An-
other major problem in real-world systems is the robust con-
trol when there is uncertainty in the systems. Several authors
deal with the control problem of the time-delay systems via
predictor-based controllers [4][8][10]. Predictor-based control-
lers include a predictor to compensate for time delay, and so
overcome the effect of the time delay. Under a predictor-based
controller, therefore, a time-delay system can be transformed
into a delay-free system in which the delay is eliminated from
the closed loop system. This approach enables us to character-
ize the design procedure by the delay-free system. However, if
there are uncertainties, the uncertain time-delay system is
hardly transformed into an uncertain delay-free system be-
cause of causality problem of the uncertainty terms.

Recently, robust stability and robust stabilization for time-
delay systems have received considerable attention. The sta-
bility criteria can be classified into two categories according to
the dependence on the size of delays; delay-independent crite-
ria[1][2]{15] and delay-dependent criteria [81{16]. One of
robust stabilization techniques for uncertain time-delay sys-
tems is to use the memoryless state feedback control. Many
results can be found in the literature; the Reccati equation
approaches [11], the linear matrix inequality (LMI) ap-
proaches [8], the H_ control theory {17]. These approaches
do not consider compensation for input delay. A sliding mode
control (SMC) has attractive features such as fast response and
good transient response [3][6][14]. It is also insensitive to
uncertainty in system. Other SMC schemes are proposed for
uncertain linear systems with state delay only [7][13]. How-
ever, their methods cannot ensure the robust stabilization of
uncertain input-delay systems because their controllers do not
use any predictor to compensate for the input delay. A sliding
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mode control with a state predictor-based sliding surface has
been proposed for the robust stabilization of uncertain linear
input-delay systems [11]. The state predictor is applied to
compensate for the delay of the system in the sliding mode.
Input-delay systems have a delayed control loop and so are
stabilized by the control input after the delayed time. Hence, if
there are unknown uncertainties entering the system, it is not
easy to solve the robustness problem because of lack of cau-
sality of them. In these types of systems, there usually exists a
delay bound T such that the systems are stabilizable for any
T satisfying 0<7<T.

This paper deals with delay-dependent condition for robust
stabilization of uncertain input-delay systems with a predictor-
based SMC proposed in the literature [11]. A robust control
law is derived to ensure the existence of a sliding mode and to
overcome the effects of the delay and uncertainty in the slid-
ing mode dynamics. Then there is a maximum delay bound for
robust stabilization of the uncertain input-delay system under
the control. Delay-dependent stability analysis for reduced
order dynamics in the sliding mode is employed to estimate
the delay bound.

II. System description
Let us consider a linear uncertain system with input delay
described by

(1) = Ax(t)+ Bu(t — ) + f,(x(D),0) + f,(x(t = 7),8) (1)

where xe R",u(r) e R” and 7 e([0,),R) are the state
vector, the input vector and the delay time, respectively, and A,
B are constant matrices with appropriate dimensions. The
unknown uncertainties f, (x(t),r) and f,(x(t—1),t) repre-
sent the nonlinear perturbations with respect to the current
state and the delayed state, respectively. In addition to (1), the
initial conditions are given by

x(0)=x", x,(6) = ¢(8), u,(8) =v(0), —T<B<0 (2)

where x (8)=x(r+6) and u,(8) = u(r+9).

It is assumed that the system is controllable, i.e.,
rank [A, exp(-—s’[)B]:n for any s, and the states are avail-
able for feedback. We also assume that the uncertainties
Sos iR xR, - R* satisfy the matching condition, i.e.,
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Jo(x(®),8) = Be, (x(1),1) 3)
fi(x(t —=7),t) = Be (x(t —1),1)
where
lles e, )]} < g [|x(0)] )
le,(x(t =), 0)|| < p, |x(t = 1)
for positive constants p., p, >0. Here ”“ denotes the 2

norm. Input-delay systems have a delayed control loop and so
are stabilized by the control input after the delayed time.
Hence, if there are unknown uncertainties that enter the sys-
tem, it is not easy to ensure the robust stabilization because of
lack of information and causality of them. And input-delay
systems are not also controllable for the initial time,
te [_1, ()]. During the initial time, nonzero initial states and
uncertainties can affect the stability of the systems. In these
types of systems it is usually needed that the condi-
tion, v(@)e L ((—7,0),R™) exists.

II1. Design of sliding mode controller with delay
compensation
We consider a predictor (predictive state), ¥ € R" as fol-
lows

(0 =x(0)+ [ e Bu(t +6)d6 5)

The sliding surface is defined as

c=5x=0 (6)

Whereo=[0'1,...,om]769{"’ and §= S,",.,.,S”']"GER"'X".

m

It is noted that the proposed sliding surface includes the state
predictor, and so yields sliding mode dynamics that compen-
sates for the input delay. It is assumed that matrix S and B are
of full rank and Se™* B is non-singular. Then, the matrix S
is chosen such that the dynamics on the sliding surface has the
desired closed-loop behaviors.

After selecting the sliding surface, the next step is to choose
the control law such that it satisfies the condition for the exis-
tence of the sliding mode; ¢’¢ < 0. This condition ensures
that the control law will force system trajectories toward the
sliding surface in finite time and maintain them on the surface
afterwards. We consider the following control structure of the
form shown in fig. 1

u(t)=u, +u, (N

where U, is an equivalent control for the nominal system of
(1) without the uncertainty and u,, is a switching control to
overcome the uncertainties of the system.

The equivalent control law u, is derived by 6 =0 for the
nominal system of (1). The derivative of ¢ along the nomi-
nal system of (1) is

6 = S[i(t)+ Af e By (1 +6)dO + ¢ Bu(t)

—Bu(t—1)] ®

= SIAX@) + A &7 Bu(1+6)d6 + e Bu(1)]

Then, the equivalent control is obtained by

{

ey = _[se**"BTSA [x(n) + f),(, ze " Buc+0)de)

= [se-4 BT 'sAx,

SMC
[ 5s s ] P E—
. V¢ f@x(0), ¢ -1)) [
U
—psgn6) j 3
u, u(t)
S B4 [P0 il PPN
)

9]

$g

Be™*

Fig. 1. Block diagram of the proposed SMC.

The equation (9) represents a state predictor-based feedback
control that compensates for the delay of the nominal system
of (1). Now, we need to eliminate the effect of the uncertain-
ties in spite of the delays, and also to force the system trajecto-
ries toward the designed sliding surface. Then, the switching
control y, is chosen by
(se “"B)Y'SBB’'S'c 2 .
- ——5(x,1) if|B'S"o|=0
u, = ||B'S’o'" X ” 0'" (10)
0 otherwise

where §(x,1)= plx|+ B, forp=p,+pgq, g>1, B>0, is
the upper bound on the norm of the lumped uncertainty of the
system. The switching control (10) is determined to remove
the effect of input delay and uncertainty by the sliding surface.
The uncertainty given at time ¢ can not be cancelled by the
switching control until the time, ¢+ 7, because of the delayed
input. It implies that the uncertainties given in the system are
sequentially cancelled by the corresponding switching controls
after each delay interval.

Remark 1 : Since the control input enters the system with
the interval of delay, t, the reaching motion of the sliding
mode is generated after the delay, and so the sliding mode
exists at t>1,+T for initial time t, -

In order to ensure the existence of the sliding mode, we
consider the time derivative of ¢ along the uncertain input-
delay system (1) as

G = STAX(1) + A j“ e ' Bu(1+6)d0 +¢ Bu(r) (1)
+fo(x(@).0+ fi(x(t -1).0] |

The dynamics (11) is constrained to the sliding surface. In
the dynamics (11), the uncertainty given at time ¢ is consid-
ered but the uncertainties (dotted arrows) given during the
delayed period are not considered because of lack of causality
of them as shown in fig. 2. It is said that the dynamics (11) is



100 {CASE: The Institute of Control, Automation and Systems Engineers, KOREA Vol. 2, No. 2, June, 2000

in ideal sliding mode. Now we are ready for the following.

Uncertainties [f (z, x(£), x(¢ = T))]

ot ,¢3 ..............................................

—+

SMC
x(1) u(t)

g= r e Bu(t+0)d6
-7
Fig. 2. Control property of the proposed SMC scheme.

Theorem 1: If the control law (7) is used for the system
(11), then a sliding mode always exists, i.e., the dynamics
(11), is asymptotically stable.

Proof: We choose the Lyapunov function

V(O’,t)=%O'TO'_ (12)
The time derivative of V along the trajectories of the system
(1) is
V=0"S[Ax(O)+A[ """ Bu(t+6)d0+e " Bu(t) (13,
+ fo(x(0), D+ fi(x(t=1),0)]
Substituting (3) and (7) into the above equation yields
V =07 [Se " Bu, + SB{e,(x(1),1) + e, (x(t = 1),1)}]. (14)
Substituting (10) into the above equation yields
V< —HBTS’G"{p x|+ B = e, (x(0).1) + ¢, (x(z =), 0)||} (15)

From the Razumikhin theorem 0,
—-7<6<0,then

le,(xt =m0 < p =D < ppg|xn)]. (16

x,(8)] < g|x(®)], ¢>1.

Thus
leo(x). 1)+ e,(x(t = 7). 1) <[leg | +[ler] < x| 1D

where p = p,+p,g>0. We can finally obtain the following
inequality:

vV <-B|B"s"0|<0 (18)

for ¢ # (. Since fis positive, ¢ = 0 as t — . |
From the theorem 1 the sliding mode of the dynamics (11)
along the sliding surface o =0 always exists in the finite
time.

IV. Global stability of system

We see that the ideal sliding mode dynamics includes uncer-
tainty given at time, . However, the uncertainties given dur-
ing the delayed period, which are not considered in the ideal
sliding mode dynamics, can influence the stability of the ac-
tual system in the sliding mode though they will be cancelled
out after each interval of the delay. It is needed to investigate
the effect of them upon the ideal sliding mode dynamics. We

first transform the uncertain input-delay system (1) to an
uncertain delay-free system by differentiating the state predic-
tor (5) along the trajectories of the system (1) as follows

X(t) = AX () +e " Bu(t) + f,(x(t),H) + f,(x(z —1),2) (19)

Since the system (19) considers only the uncertainty at time ¢,
the relation

f(x@), e+ 1)+ fi(x(-T),2+7T) (20)
=" {f, (x(@).)+ f(x(t—7),0)}

is derived. Then, the delay-free system (19) is rewritten as

X=Ax+e " Bu(t)+e " {f,(x(),t +7) Q1)
+ (@t -7),t+7)}.

Substituting (3) into the above equation yields
¥ = A% + Bu(t)+ Ble, X (£),t +7)+ ¢, (Xt —7),t +7)}(22)

where B =¢ *"B. Let us consider transformation matrix 7
as
ﬁ:ﬁ} @3

- — Z,
where B, e R™" is nonsingular. And define 7 =T7xX = [ l :|

7
where 7 e R"™, Z,€ R”. Then, the system is represented
by

70 =A,5(10+AZ,0) 24)
Z;z(t)=/_12,—Z](t)+;222‘2(t)+32{u(t) (25)

+e,(T'2(0),t+7)+e,(T7'T( 1)1 +7)}

where 747 :P év:} . Let us define a matrix K ¢ ™™
An Au

and consider the following constraint
7, =-K3, . (26)

Since (A,B) is a controllable pair, the matrix pair
(K”,Zm) is also controllable. Combining (24) and (26)
give the reduced order dynamics of the system (19) in the
sliding mode as

Z;l(t)=(KI]_Z12K)ZI(t). 2N

It is said that the dynamics (27) is in ideal sliding mode. In
general, the matrix K is chosen so that assigns eigenvalues of
the reduced order system (27) to the left-half plane.

We now will investigate the stability of the reduced order
dynamics of the actual system with uncertainties that are not
considered in the ideal sliding mode dynamics. Let us define

7 :T.\'=|:Z':| where T =Te **. Then, the reduced order dy-
z,

namics of the actual system in the sliding mode, which in-
cludes uncertainties given for a period of the delay, is rewrit-
ten as
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Zl(t)=(All—AizK)zl(t)+f0(zl(t+0)st) (28)
+fi(z,(t+6-1),1)

where fAf’:TAT":[ﬁ“ ﬂn} and the uncertainties given
Ay Ax

for—7 <@ <0 are obtained by

- 0 !
flzt+8),0) = LTfO (T" [—K} Z(t+s)t+s ]ds (29)

ﬁ(zl(t+9—r),t)='[in, (T' [1 K:|z,(t+s—‘r),t+s]ds . (30)

It is shown that the uncertainty terms of the above reduced

order dynamics can not satisfy matching condition due to the

causality problem. The equation (28) is also closed-loop

dynamics of the actual system (1) under the control law (7).
Theorem 2: If the Lyapunov equation

P(Al]_AlzK)+(A11_A|zK)TP=—Q (31)

g

are satisfied for the positive constant p=p +pgq, g>1,
and positive definite matrix P and positive definite symmet-
ric matrix Q, then system (1) under control law (7) is

and the following condition

2, (@) —27p||PB,| >0 32)

asymptotically stable.
Proof: Consider the Lyapunov function

V,=z"Pz (33)

The derivative of the above equation along the trajectories of
the system (28) is given by

Vl = ZxTPz-l +Z‘1TP21

<A @l +2|Pf + )|l (34)

where 4 . () denotes the minimum eigenvalue of matrix (.).
It is easily shown that

|pcr,+ Po|< [ |PTr [ix] 2t +5),t+5)

(35)

+ ds

PTf, (T [IK] Z(t+5—T),t+5)

g

From the Razumikhin theorem {5] we obtain

<[

|PB) (po||Z.(t + )|+ p,|Z, ¢t + s —1)|}ds. (36)

o 1
|PCs,+ || < |PB.| T {_K} lato]  ©D
where pP=p,+pPq.q>1. Then we obtain
: 1 >
V< —[/lm (Q)-21p|PB| T"[_ K] :|"z,]| 3®

The system (28) is asymptotically stable if the condition (32)
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is satisfied; then there is a sufficiently small g >1 such that
condition (32) is satisfied. Consequently, the system (1)
under the control law (7) is asymptotically stable. The proof
is completed. |
From theorem 2 it is possible to estimate a maximum delay
bound, 7 that guarantees the asymptotic stability of the sys-
tem (1) in the sliding mode as follows:

)’min (Q)

! (39)
-K||.

It is pointed out that the state predictor-based SMC pro-
posed here is a powerful tool for robust stabilization of uncer-
tain input-delay systems, while the state-based method shown
in the previous work [3]{6][7][14] is incapable of dealing with
the input-delay systems. In addition, employing 7 =0, the
state predictor-based SMC is reduced to the state-based one.

0<71<T=

2p||PB,|

V. lllustrative example
In order to illustrate the procedure of the proposed SMC
scheme, we consider an unstable plant as follows:

X(1) = o1 (t)+0 (t-1)
x(t) = 3 -2 x 1 7

0 (40)
+(l )(eo(x(t),t)+e,(x(t—T),t))

where an initial condition, x(0)=[-1.6 1], and the non-
linear parameter perturbations are given by

e,(x(1),1) = 05x, (1) sin(x, (1))

e, (x(t—1),0)=03x,(t - 1) sin(x,(t - 1))

It can be easily seen that p,=05,p,=03. The design ob-
jective is to determine the control law and maximum delay
bound 7 that robustly stabilizes system (40). By the design
procedure, assigning —5 as the eigenvalue of the reduced
order dynamics (28) resultsin K =5. Choosing 4 =11and

i

T=1, yields |pB,|=0.1 and =5.099 for

Fig. 3. Simulation results of the proposed SMC for delay
time 7=05 sec.
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P=01,0=1. From (39) the maximum delay bound 7 =11814
is obtained. We select 7=1.18 and S =[1354 4.49] for
numerical simulation. The simulation results are shown in Fig.
3-6. They show that the proposed SMC ensures the robust
stabilization of input-delay system (40) with the nonlinear
parameter perturbations.

Fig. 4. Slmuiatlon results of the proposed SMC for delay
time 7=1.1 sec.

Fig. 5. Simulation results of the proposed SMC for delay
time 7=11secand f,(¢t,x(t))=0.

k Fig. 6. Simulation results of the proposed SMC for delay
time 7 =11 secand f (¢,x(t—1))=0.

It is also shown that the reaching motion of the sliding mode is
generated after a period of delay, 7. The sliding surface di-
verges rapidly during the initial time, t+7 <0, but it is
bounded in the given delay time. Once it reaches zero and then
maintains it. As the delay time is getting larger, the system
response is getting faster but overshoot is getting larger. It is
shown in Fig. 5-6 that the uncertainty term of current state
affects the system response more than the uncertainty term of
delayed state.

VI. Conclusions

In this paper, we have proposed a delay-dependent sliding
mode control for robust stabilization of uncertain input-delay
systems. Our method uses a predictor to compensate for the
input delay. A robust control law is derived to ensure the exis-
tence of the sliding mode. The proposed scheme has a reach-
ing motion of sliding mode at ¢ >, +7 and is dependent
on the size of the delay. A maximum delay bound for robust
stabilization is estimated by the delay-dependent stability
analysis of the reduced order dynamics in the sliding mode.
The simulation results have shown that the proposed method
effectively controlled the input-delayed system with nonlinear
parameter perturbations. The proposed scheme, where 7 =0,
can be applied to systems without input delay.
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