• Title/Summary/Keyword: Time Delay Control(TDC)

Search Result 53, Processing Time 0.032 seconds

Robust Stability of TSK-type Time-Delay FLC (TSK-type 시간 지연 퍼지 제어기의 강인한 안정성)

  • 명환춘;변증남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.4-7
    • /
    • 2001
  • A stable TSK-type FLC can be designed by the method of Parallel Distributed Compensation (PDC), but in this case, solving the LMI problem is not a trivial task. To overcome such a difficulty, a Time-Delay based FLC (TDFLC) is proposed. TSK-type TDFLC consists of Time-Delay Control (TDC) and Sliding Mode Control (SMC) schemes, which result in a robust controller basaed upon an integral sliding surface.

  • PDF

Active Compliance Control for the Rehabilitation Robot with Cable Driven Transmission (케이블 구동 메커니즘을 이용한 재활 로봇의 능동 컴플라이언스 제어)

  • Kang, Sang-Hoon;Chang, Pyung-Hun;Park, Hyung-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1823-1832
    • /
    • 2004
  • In this paper, we proposed a TDC based F/T sensorless active compliance control algorithm for a rehabilitation robot (KARES II). The preference of compliance of the disabled is presented by clinical testing at Korea National Rehabilitation Center with the disabled. The KARES II was designed to work 12 predefined tasks which are very essential for helping the disabled. Among the tasks, some contact tasks between the robot and the disabled exist. Therefore, TDC based F/T sensorless compliance control algorithm is developed for these tasks without additional cost. We verified the proposed algorithm with experiment. Also for the practical use, suitable compliance for contact tasks is chosen by clinical testing at Korea National Rehabilitation Center.

Tension Control of a Winding Machine using Time-delay Estimation (시간 지연 추정 기법을 이용한 권취기의 장력 제어 알고리즘)

  • Heo, Jeong-Heon;You, Byungyong;Kim, Jinwook
    • Journal of Drive and Control
    • /
    • v.15 no.3
    • /
    • pp.21-28
    • /
    • 2018
  • We propose a tension controller based on a time-delay estimation (TDE) technique for a winding machine. Firstly, we perform the necessary calculations to derive a mathematical model of the winding machine. In this sense, it is revealed that the roll radius of the winding machine is characteristically seen to be increasing or decreasing during the winding process. That being said, it is noted that the parameters of the winding machine are coupled and constantly changing during this process. Understandably then, it is noted that the model is shown to be nonlinear and time-varying. Secondly, we propose the way to apply the TDE based controller which is the so-called Time-delay Control (TDC). The TDC utilizes the time-delayed information intentionally to compensate the nonlinear and time-varying characteristics. As we have seen, the proposed controller consists of two parts: one is a TDE component, and the other is an error dynamics component which is defined by a user. In a computer simulation based on the Matlab/Simulink program, the proposed controller is compared with a conventional PID controller, which is widely used in the tension control of the winding machine. The proposed controller reduces the incidence of overshoot and steady-state error in the tension control, as compared to the conventional PID controller.

Improved Nonlinear Speed Control of PM Synchronous Motor using Time Delay Control (시간지연 제어를 이용한 영구자석형 동기전동기의 개선된 비선형 속도제어)

  • 백인철
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.299-304
    • /
    • 1998
  • An improved nonlinear speed control of a permanent magnet synchronous motor(PMSM) is presented. A quasi-linearized and decoupled model including the influence of parameter variations and speed measurement error on the nonlinear speed control of a PMSM is derived. Using this model, to overcome the drawbacks of conventional nonlinear control scheme, the improved nonlinear control scheme that employs time delay control(TDC) is proposed. To show the validity of the proposed control scheme, simulation studies are carried out and compared with the conventional control scheme.

  • PDF

Comparison Among Yaw and Roll Motion Controllers for Rollover Prevention (차량 전복 방지를 위한 롤 및 요 운동 제어기의 성능 비교)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.701-705
    • /
    • 2014
  • This article presents a comparison among several yaw and roll motion controllers for vehicle rollover prevention. In the previous research, yaw and roll motion controllers can be independently designed for rollover prevention. Following this idea, several yaw and roll motion controllers are designed and compared in terms of rollover prevention. For the yaw motion control, PID, LQR, SMC (Sliding Mode Control) and TDC (Time-Delay Control) are adopted. For the roll motion control, LQR, LQ SOF (Static Output Feedback) control, PID, and SMC are adopted. To compare the performance of each controller, simulation is performed on a vehicle simulation package, CarSim$^{(R)}$. From simulation, TDC and LQ SOF are the best for yaw and roll motion control, respectively.

An Enhanced Time Delay Observer for Nonlinear Systems

  • Park, Suk-Ho;Chang, Pyung-Hun
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.3
    • /
    • pp.149-156
    • /
    • 2000
  • Time delay observer (TDO), thanks to the time delay control (TDC) concept, requires little knowledge of a plant model, and hence is easy to design, robust to parameter variation and computationally efficient, yet can reconstruct states rather reliable for nonlinear plant. In this paper, we propose an improved version of TDO that solves two problems inherent in TDO as follows: TDO displays large reconstruction errors due to low-frequency uncertainty and has some restrictions on selecting its gains. By introducing a low pass filter and a state associated with it, we obtain an enhanced time delay observer (ETDO). This observer turns out to have smaller reconstruction errors than those of TDO and not to have any restriction on selecting its gains, thereby solving the problems. Through performance comparison by transfer function and simulation, we validate the analysis results of two observers (TDO and ETDO) and evaluate the performances. Finally, through experiments on BLDC motor system, the analysis results are clearly conformed.

  • PDF

Robust Model-Following Controller for Uncertain Dynamical Systems by State-Space Representation (불확실한 동적 시스템의 상태공간 표현 강인 모델추종 제어기)

  • Park, Byung-Suk;Yoon, Ji-Sup;Kang, E-Sok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.12
    • /
    • pp.575-583
    • /
    • 2001
  • It is hard to obtain good robust performance and robust stability for uncertain and time-varying system. The robust 2-DOF controller is frequently used to obtain the desired response and the good robustness. Two controllers can be independently designed. Generally, one controller reduces sensitivity to parameter variations, nonlinear effects, and other disturbances. On the other hand, the other controller reduces the error between the desired command and output. In this paper, the various robust perfect MFCs(model-following controllers) combined with TDC(Time Delay Control) are designed, and the imperfect stable MFC combined with TDC and SMC(Sliding Mode Control) is proposed. These controllers are based on the method of designing robust 2-DOF controllers for dynamic system with uncertainty. The performance of the proposed imperfect sable MFC has been evaluated through computer simulations. The simulation results indicate that the proposed controller shows the excellent performance characteristics for an overhead crane with uncertain and time-varying parameters.

  • PDF

Design of time delay controller for a system with bounded control inputs (제한된 제어 입력을 갖는 시스템에 대한 시간 지연 제어기의 설계)

  • 변경석;송재복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.740-743
    • /
    • 1997
  • Reference models are used in many control algorithms for improvement of transient response characteristics. They provide desired trajectories that the plant should follow. Most control systems have bounded control inputs to avoid saturation of the plant. If we design reference models that do not account for limits of control inputs, control performance of the system may be deteriorated. In this paper, therefore, the way of determining variable reference models for TDC(time delay control) technique is proposed. The variable reference model is determined based on the information of bounded control inputs and reference inputs. This proposed method is also verified by application to the position control experiment using the BLDC motor.

  • PDF

Stability of TSK-type Time-Delay FLC (TSK 모델 시간 지연 퍼지제어기의 안정성)

  • 명환춘;변증남
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.347-353
    • /
    • 2001
  • A stable TSK -type FLC can be designed by the method of Parallel Distributed Compensation (PDC) [2] but in this case, solving the LMI problem is not a trivial task. To overcome such a difficulty, a Time-Delay based FLC (TDFLC) is proposed. TSK -type TDFLC consists of Time-Delay Control (TDC) and Sliding Mode Control (SMC) schemes, which result in a robust controller based upon an integral sliding surface. Finally, simulation study is conducted for a mass-spring-damper system.

  • PDF

Disturbance Observer and Time-Delay Controller Design for Individual Blade Pitch Control System Driven by Electro-Mechanical Actuator (전기-기계식 구동기 기반 개별 블레이드 피치 조종 시스템의 제어를 위한 외란 관측기와 시간 지연제어기 설계)

  • Jaewan Choi;Minyu Kim;Younghoon Choi
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.1
    • /
    • pp.29-36
    • /
    • 2024
  • Recently, the concept of Urban Air Mobility (UAM) has expanded to Advanced Air Mobility (AAM). A tilt rotor type of vertical take-off and landing aircraft has been actively studied and developed. A tilt-rotor aircraft can perform a transition flight between vertical and horizontal flights. A blade pitch angle control system can be used for flight stability during transition flight time. In addition, Individual Blade Control (IBC) can reduce noise and vibration generated in transition flight. This paper proposed Disturbance Observer Based Control (DOBC) and Time Delay Control (TDC) for individual blade control of an Electro-Mechanical Actuator (EMA) based blade pitch angle control system. To compare and analyze proposed controllers, numerical simulations were conducted with DOBC and TDC.