• Title/Summary/Keyword: Time Constraint

Search Result 1,045, Processing Time 0.027 seconds

Homing Guidance Law of Anti-Ship Missiles Using Flight Path Angle (비행 경로각을 이용한 대함 유도탄의 호밍 유도법칙)

  • Jin, Sheng-Hao;Yang, Bin;Hwang, Chung-Won;Park, Seung-Yub;Park, Seung-Je
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.5
    • /
    • pp.596-603
    • /
    • 2010
  • This paper presents a homing guidance law of anti-ship missiles using flight path angle to achieve an impact time constraint as well as an impact angle constraint. the independent variable in the nonlinear engagement model is change d from the flight time to the heading angle of the missile. The proposed guidance law can home a missile to the target with zero miss distance as well as satisfying both of the impact angle and time constraints. The performance of the proposed guidance law is evaluated by the computer simulations.

Ramp Metering under Exogenous Disturbance using Discrete-Time Sliding Mode Control (이산 슬라이딩모드 제어를 이용한 램프 미터링 제어)

  • Jin, Xin;Chwa, Dongkyoung;Hong, Young-Dae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.12
    • /
    • pp.2046-2052
    • /
    • 2016
  • Ramp metering is one of the most efficient and widely used control methods for an intelligent transportation management system on a freeway. Its objective is to control and upgrade freeway traffic by regulating the number of vehicles entering the freeway entrance ramp, in such a way that not only the alleviation of the congestion but also the smoothing of the traffic flow around the desired density level can be achieved for the maintenance of the maximum mainline throughput. When the cycle of the signal detection is larger than that of the system process, the density tracking problem needs to be considered in the form of the discrete-time system. Therefore, a discrete-time sliding mode control method is proposed for the ramp metering problem in the presence of both input constraint in the on-ramp and exogenous disturbance in the off-ramp considering the random behavior of the driver. Simulations were performed using a validated second-order macroscopic traffic flow model in Matlab environment and the simulation results indicate that proposed control method can achieve better performance than previously well-known ALINEA strategy in the sense that mainstream flow throughput is maximized and congestion is alleviated even in the presence of input constraint and exogenous disturbance.

Design of an effective real-time data acquisition system (효율적인 실시간 데이터 수집시스템의 설계)

  • 김동욱;염재명;김대원;박용식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1036-1039
    • /
    • 1996
  • The performance of real-time systems depends upon how well the tasks are scheduled within a cycle time and how fastly the response is made according to the occurrence of an external event. This paper presents the design of an effective real-time data acquisition system in order to gather the data from an automobile engine. This paper investigates an estimation and a restriction method of execution for aperiodic data. Also, the guarantee problem of real-time constraint is presented for periodic data. Through the experiments, the hard real-time guarantee problem of periodic data is studied and the damage problem of periodic data according to the increase of aperiodic tasks is analyzed.

  • PDF

Design and implementation technique of real-time mechanism control language for programmable automation equipment (프로그래밍형 자동화기기를 위한 실시간 메카니즘 제어언어의 설계 및 구현기법)

  • 백정현;원용훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.11
    • /
    • pp.29-38
    • /
    • 1997
  • As the trend of the automation is increasing, the usage of the programmable automation equipments like programmable controller(PC), numerical controller(NC), distributed control systems(DCS) and robot controller is greatly expanding in the area of the industrial equipments. But the development of the programing language for the programmable automatic equipment is rarely accomplished. In this paper, we propose design and implementation technique of the real-time mechanism control language by adding time constraint constructs and timing analysis constructs ot conditional statement and iteration statement of a programming language. Moreover, we made it possible to predict plausibility of time constraint constructs of a real time application program at compilation time and developing execution time analysiss technique.

  • PDF

Dynamic Analysis of a High-speed Wheel Moving on an Elastic Beam Having Gap with the Consideration of Hertz Contact (간격이 있는 탄성 보 위를 고속 주행하는 바퀴의 Hertz 접촉을 고려한 동역학적 해석)

  • Lee, Ki-Su;Kim, Seok-Seung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.3
    • /
    • pp.253-263
    • /
    • 2012
  • With the local Hertz deformation on the contact point, the dynamic contact between a high-speed wheel and an elastic beam having a gap is numerically analyzed by solving the whole equations of motion of the wheel and the beam subjected to the contact condition. For the stability of the time integration the velocity and acceleration constraints as well as the displacement constraint are imposed on the contact point. Especially the acceleration contact condition on the gap is formulated, and it is demonstrated that the contact force variation computed by the velocity contact constraint or by the acceleration contact constraint agrees well with that computed by the displacement contact constraint. The numerical examples show that, when the wheel passes on the gap, the solution is governed by the stiffness of the local Hertzian deformation.

A Comparative Study of the Incompressibility Constraint on the Rigid Plastic Finite Element Method (강소성 유한요소법에서 비압축성조건의 비교 연구)

  • 이상재;조종래;배원병
    • Transactions of Materials Processing
    • /
    • v.8 no.1
    • /
    • pp.47-56
    • /
    • 1999
  • The governing functional in plastic deformation has to satisfy the incompressibility constraint. This incompressibility constraint imposed on velocity fields can be removed by introducing either Lagrange multiplier or the penalty constant into the functional. In this study, two-dimensional rigid plastic FEM programs using these schemes were developed. These two programs and DEFORM were applied in a cylinder upsetting and a closed die forging to compare the values of load, local mean stress and volume loss. As the results, the program using Lagrange multiplier obtained a more exact and stable solution, but it took more computational time than the program using the penalty constant. Therefore, according to user's need, one of these two programs can be chosen to simulate a metal forming processes.

  • PDF

Sparse Reconfigurable Adaptive Filter with an Upgraded Connection Constraint Algorithm

  • Chang, Hong;Hwang, Suk-Seung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.305-309
    • /
    • 2011
  • A sparse reconfigurable adaptive filter (SRAF) based on a photonic switch determines the appropriate time delays and weight values for an optical switch implementation of tapped-delay-line (TDL) systems. It is well known that the choice of switch delays is significantly important for efficiently implementing the SRAF. If the same values exist as calculating the sum of weight magnitudes for implementing the connection constraint required by the SRAF, conventional connection algorithm based on sequentially selection the maximum elements might not work perfectly. In an effort to increase the effectiveness of system identification, an upgraded connection algorithm used progressive calculation to obtain the better solution is considered in this paper. The performance of the proposed connection constraint algorithm is illustrated by computer simulation for a system identification application.

Quantification of the Effect of Crack-Tip Constraint on Creep Crack Initiation Times (크리프 균열개시 시간에 대한 구속효과 영향의 정량화)

  • Lee, Seung-Ho;Jung, Hyun-Woo;Kim, Yun Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.2
    • /
    • pp.47-57
    • /
    • 2020
  • A new elastic-plastic-creep constraint parameter is proposed to quantify the effect of constraint on creep crack initiation times. It represents the difference between the transient elastic-plastic-creep crack-tip opening stress and the Riedel-Rice opening stress field in plane strain, which can be determined analytically. Application of the proposed parameter to a large set of creep crack growth test data using C(T) and SEN(B) specimens of Type 316H stainless steel at 550℃ shows that creep crack initiation times can be more accurately characterized by the C⁎-integral together with the proposed parameter.

Cloth Modeling using Implicit Constraint Enforcement (묵시적 제한방법을 이용한 옷 모델링 방법)

  • Hong, Min;Lee, Seung-Hyun;Park, Doo-Soon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.516-524
    • /
    • 2008
  • This paper presents a new modeling technique for the simulation of cloth specific characteristics with a set of hard constraints using an implicit constraint enforcement scheme. A conventional explicit Baumgarte constraint stabilization method has several defects. It requires users to pick problem-dependent coefficients to achieve fast convergence and has inherent stabilization limits. The proposed implicit constraint enforcement method is stable with large time steps, does not require problem dependent feed-back parameters, and guarantees the natural physics-based motion of an object. In addition, its computational complexity is the same as the explicit Baumgarte method. This paper describes a formulation of implicit constraint enforcement and provides a constraint error analysis. The modeling technique for complex components of cloth such as seams, buttons, sharp creases, wrinkles, and prevention of excessive elongation are explained. Combined with an adaptive constraint activation scheme, the results using the proposed method show the substantial enhancement of the realism of cloth simulations with a corresponding savings in computational cost.

  • PDF

Time-Varying Joint Constraint Map Using View Time Concept and Its Use on the Collision Avoidance of Two Robots (View Time 개념을 이용한 지변 조인트 제한 지도(JCM) 상에서의 두 로보트의 충돌 회피에 관한 연구)

  • 남윤석;이범희;고명삼;고낙용
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.11
    • /
    • pp.1770-1781
    • /
    • 1989
  • Two robots working in a common workspace may collide with each other. In this paper, a collision-free motion planning algorithm using view time concept is proposed to detect and avoid collision before robot motion. Collision may occur not only at the robot end effector but also at robot links. To detect and avoid potential collisions, the trajectory of the first robot is sampled periodically at every view time and the region in Cartesian space swept by the first robot is viewed as an obstacle during a single sampling period. The forbidden region in the joint constraint map (JCM). The JCM's are obtained in this way at every view time. An algorithm is established for collision-free motion planning of the two robot system from the sequence of JCM's and it is verified by simulations.

  • PDF