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Abstract 

A sparse reconfigurable adaptive filter (SRAF) based on a photonic switch determines the appropriate time delays and weight values for an 

optical switch implementation of tapped-delay-line (TDL) systems. It is well known that the choice of switch delays is significantly 

important for efficiently implementing the SRAF. If the same values exist as calculating the sum of weight magnitudes for implementing the 

connection constraint required by the SRAF, conventional connection algorithm based on sequentially selection the maximum elements 

might not work perfectly. In an effort to increase the effectiveness of system identification, an upgraded connection algorithm used 

progressive calculation to obtain the better solution is considered in this paper. The performance of the proposed connection constraint 

algorithm is illustrated by computer simulation for a system identification application. 
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1. Introduction 

 

The SRAF [1] considered here was developed as a new 

application for a non-blocking optical switch that is based on 

micro-electromechanical systems (MEMS) technology [2], 

consisting of a large number of input and output delays 

connected together by weights that are computed by an 

adaptive algorithm. These tap weights can be represented by a 

sparse matrix (size NN  ) with the constraint that at most 

only one element in each row and column is nonzero; the 

nonzero weights combine the input and output delays so that up 

to 2N different time delays are possible. Although the TDL 

filters have previously been considered for optical fiber 

technology, they have not worked well due to the small size of 

the switches [3]. Recently, large-scale three-dimensional 

optical switches have been developed using MEMS technology 

[4]-[6]. Due to MEMS technology, large optical switches can 

be efficiently implemented, thus broadening the range of 

possible application.  

The SRAF uses adaptive algorithm [7] to choose the 

appropriate time delays and compute the weight values of the 

optical switch according to the specific application. In previous 

work[2], a cross-correlation-based (CCB) algorithm was 

investigated for selecting the specific switch connections and a 

system-based (SB) algorithm [8] which employs a system 

identification formulation was also be presented. The previous 

connection algorithm [9] based on sequentially choosing the 

maximum elements might not work well when the same values 

exist as computing the summation of the weight values. In this 

case, the performance should be degraded, because some 

weights are randomly chosen. In order to overcome this 

problem, an upgraded connection algorithm used progressive 

computation to obtain the better solution is motivated for 

improving the accuracy of the system identification. In this 

paper, we utilize the least-mean-square (LMS) algorithm [10]-

[12] to calculate weight values for choosing delay connections. 

The performance of the proposed connection algorithm is 

demonstrated by computer simulation.   

This paper is organized as follows. In section 2, we define 

signal models for the switch, and an adaptive algorithm based 

on the LMS is discussed in section 3. In section 4, we present 

an implementation of the connection constraint and computer 

simulation is provided in section 5 to demonstrate properties of 

the proposed algorithm. Finally, we make a final conclusion in 

section 6.  

 

 

2. Signal model for the switch 

 

A set of input and output signals for the NN   switch 

represented by the weight matrix for the SRAF can be defined 

by 

     1 ,...,                        (1)Nk x k x k   x  

     1 ,...,                          (2)Nk y k y k   y  

 

where k  is the discrete-time index, shown in Figure 1. 

Delays at the input and output of the switch can be represented 

by the following matrices 

  11 ,...,                        (3)N
T

mm

x z z z
    D  
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  11 ,..., .                       (4)N
T

nn

y z z z
    D  

 

The switch weight matrix  kW  connects the elements of 

 kx  and  ky  such that at most there is only one nonzero 

element in each row and each column. Combing these 

definitions, the overall output can be written in terms of the 

input as follows: 

 

         1 1             (5)T

y xy k z k z x k  D W D  

 

where 
1z  in this time-domain expression is the delay 

operator (i.e.,    1 1z x k x k   ). 

 

 

 
Figure 1. SRAF architecture 

 

 

3. Adaptive algorithm based on LMS 

 

The output error signal can be written as  

 

     =                             (6)e k d k y k  

 

where  d k  is the desired signal. The LMS algorithm for 

computing the weight vector is: 

 

       1 2                   (7)k k k e k  w w r  

 

where 0μ  is the step-size parameter for controlling the 

convergence properties of the system, and with the regression 

vector  kr  given by 

 

         

     

   

1 1

1

1

       

                                       (8)

y x

y

y

k z k z x k

z k k

z k    

 











r D W D 1

D W x

D y

 

where T]1,...,1[1 is of size N. 

 
 

Figure 2. Algorithm flowchart for choosing the N largest 

weights subject to the connection constraint. 

 

 

4. Implementation of the connection constraint 

 

In this section, we present a connection constraint algorithm 

to choose available weights among the calculated weights in 

Section 3.  Although a connection algorithm based on 

sequentially choosing the maximum elements is investigated 

previously, it might not work well if the same values exist 

when computing the weight values. In order to solve this 

problem, an upgraded connection algorithm is motivated. A 

simple example is considered as follows: 

2 4 9

5 8 6                                (9)

7 12 13

 
 


 
  

w  

Using the initial connection algorithm, 13 [located at (3,3)], 8 

[located at (2,2)], and 2 [located at (1,1)] would be chosen. 

Because we want to maximize the sum of the weight 

magnitudes, this selection is not optimal. The optimal 

connection is given by 12 [located at (3,2)], 9 [located at (1,3)], 

and 5 [located at (2,1)]. The proposed algorithm is represented 

as follows:  

1) Choose the largest and next largest values (magnitudes) 

from those located in the different row and column of 
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the weight matrix. 

2) Store the sum of the two largest weights. 

3) Based on the original weight matrix, generate a new 

weight matrix by using zero instead of the largest 

weight.   

4) Repeat 1 and 2, and choose the largest and next largest 

values based on the new weight matrix. 

5) Store the sum of the two largest weights selected from 4. 

6) If the value in 2 exceeds that in 5, then the largest 

weight from 1 is chosen. Otherwise, if the value in 5 

exceeds that in 2, the largest weight from 4 is chosen. 

7) If the value in 2 equals that in 5, then based on 2 and 5, 

including each next largest value, restore the sums of 

the largest weights, respectively, and go to 6. 

8) Continue this procedure until N weights have been 

selected. 

Figure 2 shows an algorithm flowchart for the proposed 

connection algorithm. 

 

 

5. Computer simulation 

 

Next, we describe computer simulation results of the 

proposed connection algorithm for implementing the filter. For 

the simulation, Parks-McClellan algorithm is used to generate a 

linear-phase FIR bandpass filter with 64 coefficients. We 

specified that the passband be flat over the normalized 

frequency range [0.4, 0.5] where unity represents the Nyquist 

frequency. The stop-bands were chosen to be zero in the range 

[0, 0.3] and [0.6, 1] (so that the transition bands are (0.3, 0.4) 

and (0.5, 0.6)). The proposed connection algorithm was run for 

000,10M  input samples and with a step-size parameter of 

001.0μ . 

Figure 3. MSE curve for conventional and proposed connection 

constraint algorithms. 

Figure 3 compares the mean-square-error (MSE) [13] 

obtained by averaging the squared error over 10,000 samples 

independent computer runs for the conventional and proposed 

connection algorithms. Observe that the dotted line (MSE of 

proposed algorithm) is lower than the solid line (MSE of 

conventional algorithm) for all matrix sizes of the switch. From 

the figure we observe that the proposed connection algorithm 

has better performance than the conventional connection 

algorithm, but at the expense of an increase in the 

computational complexity. 

The impulse and frequency responses of the system are 

shown in Figure 4 and we can observe that the stop-band is 60-

80dB lower than the pass band. The resulting impulse and 

frequency responses are shown in Figures 5 and 6, respectively. 

From these figures, we observe that the converged adaptive 

filter has about 40 dB rejection capability in the stop-band for 

both cases, and we also find that adaptive algorithm has good 

performance for not only the white input signal but also the 

non-white input signal.  
 

 

6. Conclusions 

 

A sparse reconfigurable adaptive filter (SRAF) which 

consists of a large number of input and output delays connected 

together by weights is highly flexible due to its ability to 

choose from a wide range of delay values. In this paper, an 

upgraded connection constraint algorithm that can choose the 

better input and output delay values for implementing the 

connection constraints for the SRAF was described to increase 

the accuracy of system identification. The main idea behind the 

upgraded algorithm is that if the same values of summation of 

the weight magnitudes exist, based on previous calculation, 

another largest weight has to be considered for choosing the 

better solution. The proposed connection constraint algorithm 

has better performance than the conventional one, at the 

expense of an increase in the computational complexity. 

Computer simulation example was presented to illustrate the 

performance of the proposed connection algorithm. 
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Figure 4. Impulse response and frequency response of the actual bandpass filter system with 64 coefficients.

Figure 5. Impulse response and frequency response of the adaptive system with 64 nonzero coefficients for a white input signal. 

 

 

Figure 6. Impulse response and frequency response of the adaptive system with 64 nonzero coefficients for a non-white input signal 
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