• Title/Summary/Keyword: Tidal wave

Search Result 270, Processing Time 0.024 seconds

Impacts of wave and tidal forcing on 3D nearshore processes on natural beaches. Part I: Flow and turbulence fields

  • Bakhtyar, R.;Dastgheib, A.;Roelvink, D.;Barry, D.A.
    • Ocean Systems Engineering
    • /
    • v.6 no.1
    • /
    • pp.23-60
    • /
    • 2016
  • The major objective of this study was to develop further understanding of 3D nearshore hydrodynamics under a variety of wave and tidal forcing conditions. The main tool used was a comprehensive 3D numerical model - combining the flow module of Delft3D with the WAVE solver of XBeach - of nearshore hydro- and morphodynamics that can simulate flow, sediment transport, and morphological evolution. Surf-swash zone hydrodynamics were modeled using the 3D Navier-Stokes equations, combined with various turbulence models (${\kappa}-{\varepsilon}$, ${\kappa}-L$, ATM and H-LES). Sediment transport and resulting foreshore profile changes were approximated using different sediment transport relations that consider both bed- and suspended-load transport of non-cohesive sediments. The numerical set-up was tested against field data, with good agreement found. Different numerical experiments under a range of bed characteristics and incident wave and tidal conditions were run to test the model's capability to reproduce 3D flow, wave propagation, sediment transport and morphodynamics in the nearshore at the field scale. The results were interpreted according to existing understanding of surf and swash zone processes. Our numerical experiments confirm that the angle between the crest line of the approaching wave and the shoreline defines the direction and strength of the longshore current, while the longshore current velocity varies across the nearshore zone. The model simulates the undertow, hydraulic cell and rip-current patterns generated by radiation stresses and longshore variability in wave heights. Numerical results show that a non-uniform seabed is crucial for generation of rip currents in the nearshore (when bed slope is uniform, rips are not generated). Increasing the wave height increases the peaks of eddy viscosity and TKE (turbulent kinetic energy), while increasing the tidal amplitude reduces these peaks. Wave and tide interaction has most striking effects on the foreshore profile with the formation of the intertidal bar. High values of eddy viscosity, TKE and wave set-up are spread offshore for coarser grain sizes. Beach profile steepness modifies the nearshore circulation pattern, significantly enhancing the vertical component of the flow. The local recirculation within the longshore current in the inshore region causes a transient offshore shift and strengthening of the longshore current. Overall, the analysis shows that, with reasonable hypotheses, it is possible to simulate the nearshore hydrodynamics subjected to oceanic forcing, consistent with existing understanding of this area. Part II of this work presents 3D nearshore morphodynamics induced by the tides and waves.

Two-Dimensional Finite Element Analysis for Tidal Flat Simulation (조간대 모의를 위한 2차원 유한요소해석)

  • 서승원;박원경
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.1
    • /
    • pp.103-113
    • /
    • 1996
  • Two-dimensional finite element hydrodynamic models for long wave simulation usually adopt fixed land boundary. However moving boundary treatment is strongly required in the simulation of tidal flats for west and south coast of Korea. In this study very efficient and realistic moving boundary treatment is applied by considering incident long wave surface slope. Developed STEP-CM (Superior Two-step Explicit Program for Coastal Modeling) ,shows numerically stable results in comparative study for idealized one-dimensional channel. Real application of the model is done for Chonsu Bay where tidal flats are distributed along the coast. Nonlinear tidal current and tidal flat effects are easily simulated in STEP-CM and resulting circulations are detected around headland of Wonsan Island.

  • PDF

Physical Environments of Suyong Bay during the Rip Current Events at Haeundae - August 2009 (해운대 이안류 발생 시 수영만의 물리환경 - 2009년 8월)

  • Lee, J.C.;Kim, D.H.
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.3
    • /
    • pp.110-114
    • /
    • 2010
  • A data set of current, wind and wave height measured at the monitoring buoy and sea level at Busan harbor were analyzed to explain the physical conditions during the strong rip current events at Haeundae Beach of Suyeong Bay during 13~15 August 2009. Tidal current, with spring-neap variations, has similar average speed to the short-term non-tidal currents. The common features at the time of rip currents are the strong northeasterly wind and superposition of tidal and non-tidal currents both flowing toward the coast. However on 14 August when the rip current did not occur, tide and wave height were similar to the rip-current cases but the tidal and non-tidal current were to nearly opposite directions. While strong winds produce large waves thus the basic condition for rip current but its influence on the local circulation in the bay is relatively small. Of the three adjacent beaches, only at Haeundae the rip currents are reported. This difference may be due to the unique bottom topography featured by underwater hill in the central region off Haeundae which can decay the incoming waves, tides and currents to intensify the rip current.

Development of a Numerical Model to Analyze the Formation and Development Process of River Mouth Bars (하구사주의 생성 및 발달을 해석하기 위한 수치모델의 개발)

  • Kim, Yeon-Joong;Woo, Joung-Woon;Yoon, Jong-Sung;Kim, Myoung-Kyu
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.308-320
    • /
    • 2021
  • An integrated sediment management approach that includes the recovery of the amount of declined sediment supply is effective as a fundamental solution to coastal erosion. During planning, it is essential to analyze the transfer mechanism of the sediments generated from estuaries (the junction between a river and sea) to assess the amount and rate of sediment discharge (from the river to sea) supplied back to the coast. Although numerical models that interpret the tidal sand bar flushing process during flooding have been studied, thus far, there has been no study focusing on the formation and development processes of tidal sand bars. Therefore, this study aims to construct wave deformation, flow regime calculation, and topographic change analysis models to assess the amount of recovered sediment discharge and reproduce the tidal sand bar formation process through numerical analysis for integrated littoral drift management. The tidal sand bar formation process was simulated, and the wave energy and duration of action concepts were implemented to predict the long-term littoral movement. The river flux and wave conditions during winter when tidal sand bars dominantly develop were considered as the external force conditions required for calculation. The initial condition of the topographic data directly after the Maeupcheon tidal sand bar flushing during flooding was set as the initial topography. Consequently, the tidal sand bar formation and development due to nearshore currents dependent on the incident wave direction were reproduced. Approximately 66 h after the initial topography, a sand bar formation was observed at the Maengbang estuary.

Time Dependent Morphological Changes around the Closure Gap in Saemankeum (새만금 방조제 물막이 구간 주변에서의 지형변화예측(수공))

  • 박영욱;어대수;박상현
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.365-370
    • /
    • 2000
  • Sea dike construction for the tidal flat reclamation works in estuary and coast may change the characteristics of tidal motion and wave conditions in the region. In turn, a new hydraulic condition provides the impacts on sediment transport pattern and forms a new morphological environment. Also, morphological changes during the closure works of sea dike are closely related with a safy of sea dike. Therefore, the prediction of morphological changes is required secure the safe closure work and the economic design of sea dikes. To investigate morphological changes due to sea dike construction, hydrodynamic changes of tides and waves have to be evaluated, then sediment transport and sea bottom changes are computed. Mathematical modelling is required for representation of interrelation of tidal motion, wave and sediment transport. In this study, numerical model MORSYS is applied to compute the hydrodynamics and morphological changes around the closure gap for Saemankuem dike. This model allows a flexible integration of the module for waves, currents, sediment transport and bottom changes.

  • PDF

Geotechnical Properties of Sandy Tidal Flat and Stability of Artificial Tidal Flat (모래질 갯벌의 지반공학적 특성 및 인공갯벌의 안정성)

  • 권오순;장인성;이광수;염기대
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.127-137
    • /
    • 2003
  • The researches on the construction of artificial coastal wetlands have been progressed in order to cope with the situation that the area of Korean tidal flat has been reduced due to several coastal developments This study, as a part of the project on construction of the artificial tidal flats, deals with the comparison of the geotechnical characteristics between natural tidal flat and artificial tidal flat, and is also focused on the stability analysis of tidal flats. Various laboratory tests were performed using disturbed and undisturbed samples, which were obtained from a sandy tidal flat in Korea. The stability of the sandy soils accumulated on the tidal flat was investigated by comparing the shear strength of soil evaluated from laboratory test with induced shear stress due to both current and wave action.

Tidal Propagation in the Keum River (금강 感趙구간의 조석전파)

  • 최병호;안원식
    • Water for future
    • /
    • v.18 no.1
    • /
    • pp.67-73
    • /
    • 1985
  • Tidal propagation in the Keum River has been routinely handled by numerical integration of the long fravity wave equation by Dronkers. The dynamic equations include non-linear terms thereby reproducing the shallow water tides. The model was used to compute tidal distribution of the Kum River for aveage spring, mean, neap tidal conditions and further utilised to investigate the waterlevel response within tidal reaches by combined tide and flood discharge effects. The objective of this initial study is to investigate the tidal dynamics of the lower reaches of the Keum River under the condition of before-cross-channel barrage construction.

  • PDF

Sediment Fluxes in Shelf Seas Modelling and Monitoring

  • Prandel, David
    • Journal of the korean society of oceanography
    • /
    • v.37 no.3
    • /
    • pp.144-153
    • /
    • 2002
  • This is a review paper, assessing progress reported in a Special Issue (Prandle and Lane, 2000) of Coastal Engineering focusing on simulation of SPM in the North Sea, against issues over a diverse range of shelf seas and their coastal margins. The broad objectives of reproducing the characteristics of sediment fluxes off an open coast and relating these to tidal and wave forcing were achieved. However, accurate computation of these fluxes remains sensitive to largely empirical coefficients used in determining erosion and deposition rates. Bed roughness strongly influences both these coefficients and the associated near-bed current magnitudes (including wave impact thereon). Bed roughness can change significantly over a tidal cycle and dramatically over seasons or in the course of a major event. Accurate simulation of sediment fluxes on a day-to-day basis is constrained by dependency on the initial distribution of mobile sediments. The latter depends on rates and locations of original sources and the time history of preceding events. Remote sensing via aircraft could provide data for assimilation into such models to circumvent these constraints. The approaches described here can be readily applied to other coastal regions to indicate the likely distributions and pathways of known sediment sources. However quantitative simulations will require an associated observational programme. A subsequent stage is to understand the evolving balance between the forecasted sediment movement - the resulting morphological adjustments and thence modifications to the prevailing tidal current and wave regimes.

Study on Load Reduction of a Tidal Steam Turbine Using a Flapped Blade (플랩 블레이드를 이용한 조류 터빈의 부하 저감에 대한 연구)

  • Jeong, Dasom;Ko, Jin Hwan
    • Ocean and Polar Research
    • /
    • v.42 no.4
    • /
    • pp.293-301
    • /
    • 2020
  • Blades of tidal stream turbines have to sustain many different loads during operation in the underwater environment, so securing their structural safety is a key issue. In this study, we focused on periodic loads due to wave orbital motion and propose a load reduction method with a blade design. The flap of an airplane wing is a well-known structure designed to increase lift, and it can also change the load distribution on the wing through deflection. For this reason, we adopted a passive flap structure for the load reduction and investigated its effectiveness by an analytical method based on the blade element moment theory. Flap torsional stiffness required for the design of the passive flap can be obtained by calculating the flap moment based on the analytic method. Comparison between a flapped and a fixed blade showed the effect of the flap on load reduction in a high amplitude wave condition.

Macrotidal Beach Classifications Considering Beach Profiles and Changes: The Case of Beaches in Taean Region (2017-2018) (지형형태와 변화를 반영한 대조차 해빈 분류: 태안지역 해빈을 사례로(2017-2018))

  • Kim, Chan Woong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.47-65
    • /
    • 2019
  • A case study was conducted in Taean region to seek a more detailed macrotidal beach classification than existing beach classification models (Masselink and Short, 1993). Seepage and ridge & runnel were used for classification. On 20 beaches, 68 transects were surveyed 5 times using VRS-GPS. Cross-section area from the transect profiles, mean grain size from sediment analysis, significant wave height from Swan-wave modeling and beach embaymentization from aerial photograph analysis were used to identify the characteristics of the individual types. The transects were classified into 5 types in Taean region; Type 1: low tidal terrace, Type 2: low tidal terrace & ridge, Type 3: dissipative, Type 4: seasonal ridge, and Type 5: ridge & runnel. Generally, seepage was related to coarse sediment size and ridge & runnel was related to high significant wave height. Each type has different characteristics and there was a tendency between the types. The low tidal terrace type had coarse sediments, because this type is excluded from the littoral cell. In this study, the ridge and runnel type could be applied to the classification because the study area is limited only to the macrotidal environment in Taean region.