• Title/Summary/Keyword: TiC-Ni

Search Result 548, Processing Time 0.029 seconds

Thermal Stability Improvement or Ni Germanosilicide Using NiPt/Co/TiN and the Effect of Ge Fraction (x) in $Si_{l-x}Ge_x$ (NiPt/Co/TiN을 이용한 Ni Germanosilicide 의 열안정성 향상 및 Ge 비율 (x) 에 따른 특성 분석)

  • Yun Jang-Gn;Oh Soon-Young;Huang Bin-Feng;Kim Yong-Jin;Ji Hee-Hwan;Kim Yong-Goo;Cha Han-Seob;Heo Sang-Bum;Lee Jeong-Gun;Wang Jin-Suk;Lee Hi-Deok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.391-394
    • /
    • 2004
  • In this study, highly thermal stable Ni Germanosilicide has been utilized using NiPt alloy and novel NiPt/Co/TiN tri-layer. And, the Ni Germanosilicide Properties were characterized according to different Ge ratio (x) in $Si_{l-x}Ge_x$ for the next generation CMOS application. The sheet resistance of Ni Germanosilicide utilizing pure-Ni increased dramatically after the post-silicidation annealing at $600^{\circ}C$ for 30 min. Moreover, more degradation was found as the Ge fraction increases. However, using the proposed NiPt/Co/TiN tri-layer, low temperature silicidation and wide range of RTP process window were achieved as well as the improvement of the thermal stability according to different Ge fractions by the subsequent Co and TiN capping layer above NiPt on the $Si_{l-x}Ge_x$. Therefore, highly thermal immune Ni Germanosilicide up to $600^{\circ}C$ for 30 min is utilized using the NiPt/Co/TiN tri-layer promising for future SiGe based ULSI technology.

  • PDF

Behavior of Reverted Austenite in Fe-Ni-Mn-(Ti) Maraging Steels (Fe-Ni-Mn-(Ti)계 마르에이징강에서 역변태 오스테나이트의 거동)

  • Kim, Sung-Joon
    • Analytical Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.141-147
    • /
    • 1993
  • The behavior of reverted austenite in Fe-Ni-Mn(Ti) maraging steels has been investigated in the temperature range from $400^{\circ}C$ to $550^{\circ}C$ using TEM equipped with EDX. Four kinds of reverted austenite appeared depending on the aging temperatures and time : Widmanstatten, granular, lath-like and recrystallized austenite. The reverted austenites are enriched in Ni and Mn due to the dissolution of precipitates and redistribution of alloying elements. Widmanstatten austenite appears unformly in the lath martensite having the K-S orientation relationship with the martensite lath, while lath-like martensites showed K-S and N relations depending on the chemistry and heat treating condition. The recrystallized austenite forms at $550^{\circ}C$ after long aging times : some becomes unstable and transforms to lath martensite on cooling.

  • PDF

Novel Ni-Silicide Structure Utilizing Cobalt Interlayer and TiN Capping Layer and its Application to Nano-CMOS (Cobalt Interlayer 와 TiN capping를 갖는 새로운 구조의 Ni-Silicide 및 Nano CMOS에의 응용)

  • 오순영;윤장근;박영호;황빈봉;지희환;왕진석;이희덕
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.1-9
    • /
    • 2003
  • In this paper, a novel Ni silicide technology with Cobalt interlayer and Titanium Nitride(TiN) capping layer for sub 100 nm CMOS technologies is presented, and the device parameters are characterized. The thermal stability of hi silicide is improved a lot by applying co-interlayer at Ni/Si interface. TiN capping layer is also applied to prevent the abnormal oxidation of NiSi and to provide a smooth silicidc interface. The proposed NiSi structure showed almost same electrical properties such as little variation of sheet resistance, leakage current and drive current even after the post silicidation furnace annealing at $700^{\circ}C$ for 30 min. Therefore, it is confirmed that high thermal robust Ni silicide for the nano CMOS device is achieved by newly proposed Co/Ni/TiN structure.

A STUDY ON COMPARISON OF STAINLESS STEEL, NICKEL-TITANIUM HAND, NICKEL-TITANIUM ENGINE-DRIVEN FILE INSTRUMENTATION USING COMPUTED TOMOGRAPHY (수동형 Stainless Steel, Nickel-Titanium 및 엔진 구동형 Nickel-Titanium File의 근관형성 능력에 관한 비교 연구)

  • Lee, Hwang;Im, Mi-Kyung;Lee, Keon-Il;Lee, Yong-Keun
    • Restorative Dentistry and Endodontics
    • /
    • v.23 no.1
    • /
    • pp.391-400
    • /
    • 1998
  • The aim of this study was to determine the shaping ability of stainless-steel K file (S-S K file), nickel-titanium K file (Ni-Ti K file) and engine driven nickel-titanium file (Quantec file) in resin simulated root canal. Computed tomography was used to evaluate the change of the root canal morphology. Thirty nine resin simulated root canal were divided into four groups (A:12, B:12, C:12, D:3). Resin simulated canals were scanned by computed tomography before instrumentation (1st C-T scan). Canals were instrumented using step back preparation technique with S-S K file in group A and Ni-Ti K file in group B. Group C was prepared with engine driven Ni-Ti file. Group D was uninstrumented to compare the 1st C-T scan images with 2nd C-T scan images of root canal. Instrumented canals were again scanned using computed tomography (2nd C-T scan), and reformated images of the uninstrumented canals were compared with images of the instrumented canals. In the sections of 2mm and 6mm from the apex, Quantec file caused significantly less canal transportation than S-S K file and Ni-Ti K file (p<0.05). Quantec file produced more centered than S-S K file and Ni-Ti K file in the sections of 2mm and 4mm from the apex (p<0.05). There was no significant difference in the removed volume of canals among the each groups (p>0.05). However the removed canal volume from the apex to 5mm were significantly higher than them from 5mm to 1mm (p<0.05) in each groups. Under the conditions of this study, preparation with Quantec file was more effective and produce more appropriate canal shapes than S-S K file and Ni-Ti K file.

  • PDF

A Study on the Diffusion Barrier Properties of Pt/Ti and Ni/Ti for Cu Metallization (구리 확산에 대한 Pt/Ti 및 Ni/Ti 확산 방지막 특성에 관한 연구)

  • 장성근
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.2
    • /
    • pp.97-101
    • /
    • 2003
  • New Pt/Ti and hi/Ti double-metal structures have been investigated for the application of a diffusion barrier between Cu and Si in deep submicron integrated circuits. Pt/Ti and Ni/Ti were deposited using E-beam evaporator at room temperature. The performance of Pt/Ti and Ni/Ti structures as diffusion barrier against Cu diffusion was examined by charge pumping method, gate leakage current, junction leakage current, and SIMS(secondary ion mass spectroscopy). These evaluation indicated that Pt/Ti(200${\AA}$/100${\AA}$) film is a good barrier against Cu diffusion up to 450$^{\circ}C$.