• Title/Summary/Keyword: Ti-S-N

Search Result 680, Processing Time 0.061 seconds

Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA)

  • Naji, Sahar Abdulrazzaq;Behroozibakhsh, Marjan;Kashi, Tahereh Sadat Jafarzadeh;Eslami, Hossein;Masaeli, Reza;Mahgoli, Hosseinali;Tahriri, Mohammadreza;Lahiji, Mehrsima Ghavvami;Rakhshan, Vahid
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.2
    • /
    • pp.113-121
    • /
    • 2018
  • PURPOSE. The aim of this preliminary study was to investigate, for the first time, the effects of addition of titania nanotubes ($n-TiO_2$) to poly methyl methacrylate (PMMA) on mechanical properties of PMMA denture base. MATERIALS AND METHODS. $TiO_2$ nanotubes were prepared using alkaline hydrothermal process. Obtained nanotubes were assessed using FESEM-EDX, XRD, and FT-IR. For 3 experiments of this study (fracture toughness, three-point bending flexural strength, and Vickers microhardness), 135 specimens were prepared according to ISO 20795-1:2013 (n of each experiment=45). For each experiment, PMMA was mixed with 0% (control), 2.5 wt%, and 5 wt% nanotubes. From each $TiO_2$:PMMA ratio, 15 specimens were fabricated for each experiment. Effects of $n-TiO_2$ addition on 3 mechanical properties were assessed using Pearson, ANOVA, and Tukey tests. RESULTS. SEM images of $n-TiO_2$ exhibited the presence of elongated tubular structures. The XRD pattern of synthesized $n-TiO_2$ represented the anatase crystal phase of $TiO_2$. Moderate to very strong significant positive correlations were observed between the concentration of $n-TiO_2$ and each of the 3 physicomechanical properties of PMMA (Pearson's P value ${\leq}.001$, correlation coefficient ranging between 0.5 and 0.9). Flexural strength and hardness values of specimens modified with both 2.5 and 5 wt% $n-TiO_2$ were significantly higher than those of control ($P{\leq}.001$). Fracture toughness of samples reinforced with 5 wt% $n-TiO_2$ (but not those of 2.5% $n-TiO_2$) was higher than control (P=.002). CONCLUSION. Titania nanotubes were successfully introduced for the first time as a means of enhancing the hardness, flexural strength, and fracture toughness of denture base PMMA.

Dependence of the Formation of $TiO_{2\pm}{\delta}$ Films on Plasma Process Variables (플라즈마 공정 변수가 $TiO_{2\pm}{\delta}$ 박막 형성에 미치는 영향)

  • Park, Sang-Gi;Gang, Bong-Ju;Lee, Won-Hui;Lee, Jae-Gap
    • Korean Journal of Materials Research
    • /
    • v.10 no.11
    • /
    • pp.732-737
    • /
    • 2000
  • Plasma enhanced chemical vapor deposition of $TiO_{2$\pm}{\delta}$ has been carried out using TEMAT [tetrakis(ethylmethylamido) titanium] and $H_2$. Increasing the power from 300 W to 500 W produced the high density plasma, leading to the formation of TiO$_2$films with an increased ratio of Ti to O and a negligible amount of C and N. Applying the bias of 30W to the substrate in creased the growth rate of the film with a slightly increased content of Ti in the film. In addition, $H_2O$ was from either the residual gas in the gase pressure or $H_2(/He)$ gas and actively participated in the formation of $TiO_2$ films. Consequently, Ti ions created in the plasma could be a main contributor to $TiO_2$ formation with a slight amount of $H_2O(~10^{-4}Toor)$ in the ambient, which provided the dissociation of TEMAT.

  • PDF

The Contact Characteristics of Ferroelectrics Thin Film and a-Si:H Thin Film (강유전성 박막의 형성 및 수소화 된 비정질실리콘과의 접합 특성)

  • 허창우
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.501-504
    • /
    • 2003
  • In this paper, for enhancement of property on a-Si:H TFTs We measure interface characteristics of ferroelectrics thin film and a-Si:H thin film. First, SrTiO$_3$ thin film is deposited bye-beam evaporation. Deposited films are annealed for 1 hour in N2 ambient at 150$^{\circ}C$ ∼ 600$^{\circ}C$. Dielectric characteristics of deposited SrTiO$_3$ films are very good because dielectric constant shows 50∼100 and breakdown electric field are 1∼1.5MV/cm. a-SiN:H,a-Si:H(n-type a-Si:H) are deposited onto SrTiO$_3$ film to make MFNS(Metal/ferroelectric/a-SiN:H/a-Si:H) by PECVD. After the C-V measurement for interface characteristics, MFNS structure shows no difference with MNS(Metal/a-SiN:H/a-Si:H) structure in C-V characteristics but the insulator capacitance value of MFNS structure is much higher than the MNS because of high dielectric constant of ferroelectrics.

  • PDF

Nucleation Enhancing Effect of Different ECR Plasmas Pretreatment in the RUO2 Film Growth by MOCVD (ECR플라즈마 전처리가 RuO2 MOCVD시 핵생성에 끼치는 효과)

  • Eom, Taejong;Park, Yunkyu;Lee, Chongmu
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.94-98
    • /
    • 2005
  • $RuO_2$ is widely studied as a lower electrode material for high dielectric capacitors in DRAM (Dynamic Random Access Memories) and FRAM (Ferroelectric Random Access Memories). In this study, the effects of hydrogen, oxygen, and argon Electron Cyclotron Resonance (ECR) plasma pretreatments on deposited by Metal Organic Chemical Vapor Deposition (MOCVD) $RuO_2$ nucleation was investigated using X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM) analyses. Argon ECR plasma pretreatment was found to offer the highest $RuO_2$ nucleation density among these three pretreatments. The mechanism through which $RuO_2$ nucleation is enhanced by ECR plasma pretreatment may be that the argon or the hydrogen ECR plasma removes nitrogen and oxygen atoms at the TiN film surface so that the underlying TiN film surface is changed to Ti-rich TiN.

A study on TCR characteristic of $TaN/Al_{2}O_{3}$ thin film resistors ($TaN/Al_{2}O_{3}$ 박막 저항소자 개발에 관한 연구)

  • Kim, I.S.;Cho, Y.R.;Min, B.K.;Song, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05b
    • /
    • pp.82-85
    • /
    • 2002
  • In recent years, the tantalum nitride(TaN) thin-film has been developed for the electronic resistor and capacitor. In this papers, this study presents the surface profile and sheet-resistance property relationship of reactive-sputtered TaN thin film resistor processed by buffer of Ti and Cr on alumina substrate. The TCR properties of the TaN films were discussed in terms of reactive gas ratio, ratio of nitrogen, crystallization and thin films surface morphology due to annealing temperature. It is clear that the TaN thin-films resistor electrical properties are low TCR related with it's buffer layer condition. Ti buffer layer thin film resistor having a good thermal stability and lower TCR properties then Cr buffer expected for the application to the dielectric material of passive component.

  • PDF

The etch characteristic of TiN thin films by using inductively coupled plasma (유도결합 플라즈마를 이용한 TiN 박막의 식각 특성 연구)

  • Park, Jung-Soo;Kim, Dong-Pyo;Um, Doo-Seung;Woo, Jong-Chang;Heo, Kyung-Moo;Wi, Jae-Hyung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.74-74
    • /
    • 2009
  • Titanium nitride has been used as hardmask for semiconductor process, capacitor of MIM type and diffusion barrier of DRAM, due to it's low resistivity, thermodynamic stability and diffusion coefficient. Characteristics of the TiN film are high intensity and chemical stability. The TiN film also has compatibility with high-k material. This study is an experimental test for better condition of TiN film etching process. The etch rate of TiN film was investigated about etching in $BCl_3/Ar/O_2$ plasma using the inductively coupled plasma (ICP) etching system. The base condition were 4 sccm $BCl_3$ /16 sccm Ar mixed gas and 500 W the RF power, -50 V the DC bias voltage, 10 mTorr the chamber pressure and $40\;^{\circ}C$ the substrate temperature. We added $O_2$ gas to give affect etch rate because $O_2$ reacts with photoresist easily. We had changed $O_2$ gas flow rate from 2 sccm to 8 sccm, the RF power from 500 W to 800 W, the DC bias voltage from -50 V to -200 V, the chamber pressure from 5 mTorr to 20 mTorr and the substrate temperature from $20\;^{\circ}C$ to $80\;^{\circ}C$.

  • PDF

Evaluation of Environment Imapcts on TiN-ZrCo Composites Hydrogen Seperation by Material Life Cycle Assessment (TiN-ZrCo 복합수소 분리막의 제조와 환경성 평가)

  • KIM, MINGYEOM;AHN, JOONGWOO;HONG, TAEWHAN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.6
    • /
    • pp.627-634
    • /
    • 2017
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-ZrCo membrane manufacturting process. Gabi was used as software. The Eco-Indicator 99 methodology was used to evaluate the 11 impact categories and the 10 impact categories using the CML 2001 methodology. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of the characterization and normalization, the environmental impacts of each category of impacts were GWP 100 years with the highest environmental impact of 99.9%.

Fabrication of Fe-TiC Composite by High-Energy Milling and Spark-Plasma Sintering

  • Tuan, N.Q.;Khoa, H.X.;Vieta, N.H.;Lee, Y.H.;Lee, B.H.;Kim, J.S.
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.338-344
    • /
    • 2013
  • Fe-TiC composite was fabricated from Fe and TiC powders by high-energy milling and subsequent spark-plasma sintering. The microstructure, particle size and phase of Fe-TiC composite powders were investigated by field emission scanning electron microscopy and X-ray diffraction to evaluate the effect of milling conditions on the size and distribution of TiC particles in Fe matrix. TiC particle size decreased with milling time. The average TiC particle size of 38 nm was obtained after 60 minutes of milling at 1000 rpm. Prepared Fe-TiC powder mixture was densified by spark-plasma sintering. Sintered Fe-TiC compacts showed a relative density of 91.7~96.2%. The average TiC particle size of 150 nm was observed from the FE-SEM image. The microstructure, densification behavior, Vickers hardness, and fracture toughness of Fe-TiC sintered compact were investigated.