DOI QR코드

DOI QR Code

Fabrication of Fe-TiC Composite by High-Energy Milling and Spark-Plasma Sintering

  • Tuan, N.Q. (School of Materials Science and Engineering, University of Ulsan) ;
  • Khoa, H.X. (School of Materials Science and Engineering, University of Ulsan) ;
  • Vieta, N.H. (School of Materials Science and Engineering, Hanoi University of Science and Technology) ;
  • Lee, Y.H. (School of Materials Science and Engineering, University of Ulsan) ;
  • Lee, B.H. (School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, J.S. (School of Materials Science and Engineering, University of Ulsan)
  • Received : 2013.07.31
  • Accepted : 2013.10.01
  • Published : 2013.10.28

Abstract

Fe-TiC composite was fabricated from Fe and TiC powders by high-energy milling and subsequent spark-plasma sintering. The microstructure, particle size and phase of Fe-TiC composite powders were investigated by field emission scanning electron microscopy and X-ray diffraction to evaluate the effect of milling conditions on the size and distribution of TiC particles in Fe matrix. TiC particle size decreased with milling time. The average TiC particle size of 38 nm was obtained after 60 minutes of milling at 1000 rpm. Prepared Fe-TiC powder mixture was densified by spark-plasma sintering. Sintered Fe-TiC compacts showed a relative density of 91.7~96.2%. The average TiC particle size of 150 nm was observed from the FE-SEM image. The microstructure, densification behavior, Vickers hardness, and fracture toughness of Fe-TiC sintered compact were investigated.

Keywords

References

  1. Hugh O. Pierson: Handbook of Refractory Carbides and Nitrides: properties, characteristics, processing, and applications, William Andrew Publishing/Noyes, 1996.
  2. T. K. Bandyopadhyay and K. Das: J. Mater. Sci., 39 (2004) 6503. https://doi.org/10.1023/B:JMSC.0000044889.38392.1d
  3. E. Pagounis, M. Talvitie and V. K. Lindroos: Metall. Mater. Trans. A, 27A (1996) 4171.
  4. Wang Jing and Wang Yisan: Materials Letters, 61 (22) (2007) 4393. https://doi.org/10.1016/j.matlet.2007.02.011
  5. B. S. Terry and O. S. Chinymakobvu: J. Mater. Sci. Lett., 10 (1991) 628. https://doi.org/10.1007/BF00723359
  6. M. Razavi, M .S. Yaghmaee, M. R. Rahimipour, S. Salman, and R. Tousi: Int. J. Miner. Process, 94 (2010) 97. https://doi.org/10.1016/j.minpro.2010.01.002
  7. I. W. M. Brown and W. R. Owers: Current Applied Physics, 4 (2004) 171. https://doi.org/10.1016/j.cap.2003.11.001
  8. K. S. Vecchio, J. C. Lasalvia, M. A. Meyers and G. T. Gray III: Metall. Trans. A, 23 (1992) 87. https://doi.org/10.1007/BF02660856
  9. Y. Choi and S. W. Rhee: J. Mater. Sci., 28 (1993) 6669. https://doi.org/10.1007/BF00356413
  10. L. L. Wang, Z. A. Munir and Y. M. Maximov: J. Mater. Sci., 28 (1993) 3693. https://doi.org/10.1007/BF00353167
  11. J. D. Ayers and R. J. Schaefer: Laser Application in Material Processing, Society of Photo-Optical Instrumentation Engineers, Bellingham, Washington, (1979) 57.
  12. J. Lee, K. Euh, J.C. Oh and S. Lee: Mater. Sci. Eng. A, 323 (2002) 251. https://doi.org/10.1016/S0921-5093(01)01378-8
  13. A.Y. Fasasi, M. Pons, C. Tassin and A. Galerie: J. Mater. Sci., 29 (1994) 5121. https://doi.org/10.1007/BF01151106
  14. R. Licheri, R. Orru, G. Cao, A. Crippa and R. Scholz: Ceramics International, 29 (2003) 519. https://doi.org/10.1016/S0272-8842(02)00196-7
  15. Y. B. Liu, S. C. Lim, L. Lu, and M. O. Lal: Metal Matrix Composites, Woodhead Publishing, Madrid, (1993) 770.
  16. Roberto Orr, Roberta Licheri, Antonio Mario Locci, Alberto Cincotti, and Giacomo Cao: Materials Science and Engineering: R: Reports, 63(4-6) (2009) 127-287. https://doi.org/10.1016/j.mser.2008.09.003
  17. http://rsbweb.nih.gov/ij/.
  18. G. D. Quinn and R. C. Bradt: J. Am. Ceram. Soc., 90 (2007) 673. https://doi.org/10.1111/j.1551-2916.2006.01482.x
  19. F. Sergejev and M. Antonov: Comparative study on indentation fracture toughness measurements of cemented carbides, Proc. Estonian Acad. Sci. Eng., 12 (2006) 388.
  20. C. Suryanarayana: Mechanical Alloying and Milling, Marcel Dekker publishing, New York, (2003) 83.
  21. R. M. German: Powder Metallurgy of Iron and Steel, John Wiley & Sons, Inc., New York, (1998) 385-396.
  22. R. M. Hathaway, P. K. Rohatgi, N. Sobczak, and J. Sobczak: Proc. Int. Conf. HIGH TEMPERATURE CAPILLARITY (Edited by N. Eustathopoulos and N. Sobczak), Cracow, Poland, (1997) 267.

Cited by

  1. Fabrication of core-shell structured TiC-Fe composite powders by fluidized bed chemical vapor deposition pp.00027820, 2019, https://doi.org/10.1111/jace.16351