• 제목/요약/키워드: Ti-6Al-4V alloys

검색결과 140건 처리시간 0.04초

Ti-6Al-4V, Ti-4Fe, Ti-(1,2)Si합금의 고온산화 (High Temperature Oxidation of Ti-6Al-4V, Ti-4Fe, Ti-(1,2)Si Alloys)

  • 박기범;이동복
    • 한국표면공학회지
    • /
    • 제34권2호
    • /
    • pp.135-141
    • /
    • 2001
  • Arc-melted Ti-6Al-4V, Ti-4Fe and Ti-(1,2) Si alloys were oxidized at 700, 800, 900 and $1000^{\circ}C$ in air. The oxidation resistance of Ti-4Fe was comparable to that of Ti-6Al-4V, while the oxidation resistance of Ti-(1,2) Si was superior to that of Ti-6Al-4V. Ti-2Si displayed the best oxidation resistance among the four alloys, but failed after oxidation at $1000^{\circ}C$ for 17h. The oxide scale formed on Ti-6Al-4V, Ti-4Fe and Ti-(1,2)Si consisted of ($TiO_2$ and a small amount of $Al_2$$O_3$), ($TiO_2$ and a small amount of dissolved iron), and ($TiO_2$ plus a small concentration of amorphous $SiO_2$), respectively. The oxide grains of the surface scale of the four alloys were generally fine and round.

  • PDF

TiN 코팅된 Ti 및 Ti-6Al-4V합금의 부식거동 (Corrosion behaviors of Cp-Ti and Ti-6Al-4V alloys by TiN coating)

  • 이순현;정용훈;최한철;고영무
    • 대한치과기공학회지
    • /
    • 제30권1호
    • /
    • pp.25-31
    • /
    • 2008
  • Cp-Ti and Ti-6Al-4V alloys commonly used dental implant materials, particularly for orthopaedic and osteosynthesis because of its suitable mechanical properties and excellent biocompatibility. This alloys have excellent corrosion behavior in the clinical environment. The first factor to decide the success of dental implantation is sufficient osseointegration and high corrosion resistance between on implant fixture and its surrounding bone tissue. In this study, in order to increase corrosion resistance and biocompatibility of Cp-Ti and Ti-6Al-4V alloy that surface of manufactured alloy was coated with TiN by RF-magnetron sputtering method. The electrochemical behavior of TiN coated Cp-Ti and Ti-6Al-4V alloy were investigated using potentiodynamic (EG&G Co, PARSTAT 2273. USA) and potentiostatic test (250mV) in 0.9% NaCl solution at 36.5 $\pm$ 1$^{\circ}C$. These results are as follows : 1. From the microstructure analysis, Cp-Ti showed the acicular structure of $\alpha$-phase and Ti-6Al-4V showed the micro-acicular structure of ${\alpha}+{\beta}$ phase. 2. From the potentiodynamic test, Ecorr value of Cp-Ti and Ti-6Al-4V alloys showed -702.48mV and -319.87mV, respectively. Ti-6Al-4V alloy value was higher than Cp-Ti alloy. 3. From the analysis of TiN and coated layer, TIN coated surface showed columnar structure with 800 nm thickness. 4. The corrosion resistance of TiN coated Cp-Ti and Ti-6Al-4V alloys were higher than those of the non-coated Ti alloys in 0.9% NaCl solution from potentiodynamic test, indicating better protective effect. 5. The passivation current density of TiN coated Cp-Ti and Ti-6Al-4V alloys were smaller than that of the noncoated implant fixture in 0.9% NaCl solution, indicating the good protective effect resulting from more compact and homogeneous layer formation.

  • PDF

치과용(齒科用) 순(純) 타이타늄 스크랩을 재활용(再活用)한 Ti-6Al-4V 합금(合金)의 제조(製造) 및 산소(酸素) 제어(制御) (Preparation and oxygen control of Ti-6Al-4V alloys by recycling dental pure Ti scraps)

  • 오정민;이백규;최국선;임재원
    • 자원리싸이클링
    • /
    • 제21권1호
    • /
    • pp.60-65
    • /
    • 2012
  • 본 연구는 치과용 순 타이타늄 스크랩을 재활용하여 진공 아크 용해에 의해 Ti-6Al-4V 합금을 제조하였고, 이때 산소함량이 다르게 제조된 Ti-6A1-4V 합금의 물성을 평가하였다. 사용된 타이타늄 스크랩은 치과용 임플란트 재료로써 ASTM G1~G4 등급으로 산소함량이 다르게 진공 아크 용해에 의해 건전한 잉곳을 만든 후 Ti-6Al-4V 합금을 제조하였다. 합금 제조시 875 torr의 가압 아르곤 분위기에서 용해하였을 때 Al 조성의 손실이 방지됨을 확인하였다. 제조된 Ti-6Al-4V의 산소함량이 1170~3340 ppm으로 증가함에 따라 Ti-6Al-4V의 경도가 증가하여 순 타이타늄의 경향과 동일함을 확인하였다. 따라서 본 연구를 통해서 Ti-6Al-4V 합금 제조에 있어서 진공 아크 용해에 의해 치과용 순 타이타늄 스크랩의 재활용 가능성을 확인하였다.

Effects of Cr and Fe Addition on Microstructure and Tensile Properties of Ti-6Al-4V Prepared by Direct Energy Deposition

  • Byun, Yool;Lee, Sangwon;Seo, Seong-Moon;Yeom, Jong-taek;Kim, Seung Eon;Kang, Namhyun;Hong, Jaekeun
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1213-1220
    • /
    • 2018
  • The effects of Cr and Fe addition on the mechanical properties of Ti-6Al-4V alloys prepared by direct energy deposition were investigated. As the Cr and Fe concentrations were increased from 0 to 2 mass%, the tensile strength increased because of the fine-grained equiaxed prior ${\beta}$ phase and martensite. An excellent combination of strength and ductility was obtained in these alloys. When the Cr and Fe concentrations were increased to 4 mass%, extremely fine-grained martensitic structures with poor ductility were obtained. In addition, Fe-added Ti-6Al-4V resulted in a partially melted Ti-6Al-4V powder because of the large difference between the melting temperatures of the Fe eutectic phase (Ti-33Fe) and the Ti-6Al-4V powder, which induced the formation of a thick liquid layer surrounding Ti-6Al-4V. The ductility of Fe-added Ti-6Al-4V was thus poorer than that of Cr-added Ti-6Al-4V.

가토의 경골에 이식된 새로운 티타늄계 합금 주위의 골형성에 관한 형태학적 연구 (A HISTOMORPHOMETRIC STUDY OF BONE APPOSITION TO NEWLY DEVELOPED TI-BASED ALLOYS IN RABBIT BONE)

  • 김태인
    • 대한치과보철학회지
    • /
    • 제36권5호
    • /
    • pp.701-720
    • /
    • 1998
  • Research advances in dental implantology have led to the development of several different types of materials and it is anticipated that continued research will lead to advanced dental implant materials. Currently used pure titanium has relatively low hardness and strength which may limit its ability to resist functional loads as a dental implant. Ti-6Al-4V also has potential problems such as corrosion resistance. osseointegration properties and neurologic disorder due to aluminium and vanadium, known as highly toxic elements, contained in Ti-6Al-4V. Newly developed titanium based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) which do not contain toxic metallic components were designed by the Korea Institute of Science and Technology (KIST) with alloy design techniques using Zr, Nb, Ta, Pd, and In which are known as non-toxic elements. Biocompatibility and osseointegration properties of these newly designed alloys were evaluated after implantation in rabbit femur for 3 months. The conclusions were as follows : 1. Mechanical properties of the new designed Ti based alloys(Ti-20Zr-3Nb-3Ta-0.2Pd-1In, Ti-20Zr-3Nb-3Ta-0.2Pd) demonstrated close hardness and tensile strength values to Ti-6Al-4V. 2. New desinged experimental alloys showed stable corrosion resistance similar to the pure Ti but better than Ti-6Al-4V. However, the corrosion rate was higher for the new alloys. 3. Cell culture test showed that the new alloys have similar cell response compared with pure Ti and Ti-6Al-4V with no cell adverse reaction. 4. New designed alloys showed similar bone-metal contact ratio and osseointegration properties compared to pure Ti and Ti-6Al-4V after 3 months implantation in rabbit femur. 5. Four different surface treatments of the metals did not show any statistical difference of the cell growth and bone-metal contact ratio.

  • PDF

적층가공 (3D 프린팅) Ti-6Al-4V합금의 국부부식 저항성 평가를 위한 임계국부부식온도와 임계국부부식전위 측정방법의 비교 (Measurement of Localized Corrosion Resistance in Additively Manufactured Ti-6Al-4V Alloys Using Electrochemical Critical Localized Corrosion Temperature (E-CLCT) versus Electrochemical Critical Localized Corrosion Potential (E-CLCP))

  • 서동일;이재봉
    • Corrosion Science and Technology
    • /
    • 제20권1호
    • /
    • pp.37-43
    • /
    • 2021
  • Additively manufactured (AM) Ti-6Al-4V alloys exhibit a dominant acicular martensite phase (α'), which is characterized by an unstable energy state and highly localized corrosion susceptibility. Electrochemical critical localized corrosion temperature (E-CLCT, ISO 22910: 2020) and electrochemical critical localized corrosion potential (E-CLCP, ISO AWI 4631: 2021) were measured to analyze the localized corrosion resistance of the AM Ti-6Al-4V alloy. Although E-CLCP was measured under mild corrosive conditions such as human body, the validity of evaluating localized corrosion resistance of AM titanium alloys was demonstrated by comparison with E-CLCT. However, the mechanisms of resistance to localized corrosion on the as-received and heat-treated AM Ti-6Al-4V alloys under E-CLCT and E-CLCP differ at various temperatures because of differences in properties under localized corrosion and repassivation. The E-CLCT is mainly measured for initiation of localized corrosion on the AM titanium alloys based on temperature, whereas the E-CLCP yields repassivation potential of re-generated passive films of AM titanium alloys after breaking down.

Ti-6Al-4V 타이타늄 합금의 절삭특성에 관한 연구 (A Study on the Machining Characteristics of Ti-6Al-4V Alloy)

  • 김남용;고준빈;이동주
    • 한국정밀공학회지
    • /
    • 제20권4호
    • /
    • pp.20-28
    • /
    • 2003
  • The machinability of Ti-6Al-4V titanium alloy and tool wear behavior in machining of Ti-6Al-4V titanium alloy was studied to understand the machining characteristics. This material is one of the strong candidate materials in present and future aerospace or medical applications. Recently, their usage has already been broaden to everyday's commercial applications such as golf club heads, finger rings and many decorative items. To anticipate the general use of this material and development of the titanium alloys in domestic facilities, the review and the study of the machining parameters for those alloys are necessary. This study is concentrated to the machining parameters of the Ti-6Al-4V alloy due to their dominant position in the production of titanium alloys.

초경공구를 사용한 Ti-6Al-4V 타이타늄 합금의 절삭가공시 공구마멸과 절삭특성에 관한 연구 (A Study on the Tool Wear and Cutting Characteristics in the Machining of Ti-6Al-4V using Tungsten Carbide Tool)

  • 김남용;홍우표;이동주
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.361-366
    • /
    • 2000
  • The machinability of Ti-6Al-4V titanium alloy and tool wear behavior when machining Ti-6Al-4V titanium alloy was studied to understand the machining characteristics. this material is one of the strong candidate materials present and future aerospace or medical applications. Nowadays their usage has already been broaden to everyday's commercial applications such as golf club heads, finger rings and many decorative items. Anticipating the general use of this material and development of the titanium alloys in domestic facilities, the review and the study of the machining parameters for those alloys are deemed necessary. this study is concentrated to the machining parameters of the Ti-6Al-4V alloy due to their dominant position in the production of titanium alloys.

  • PDF

Nanotube Morphology Change of Ti-6Al-4V Alloys by Heat Treatment

  • Kim, Sung-Hwan;Choe, Han-Cheol
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.194-194
    • /
    • 2013
  • In order to investigate nanotube morphology change of Ti-6Al-4V alloys by heat treatments, the Ti-6Al-4V alloys were used in this study. In non-treated Ti-6Al-4V alloy case, nanotubes only exhibited at ${\alpha}$ phase region with dissolved V-oxide area of ${\beta}$ phase. However, in Ti-6Al-4V alloy at $800^{\circ}C$ WQ case, nanotubes exhibited at both ${\alpha}$ and ${\beta}$ phase region. Electrochemical corrosion studies showed that the nanotubular alloy at $800^{\circ}C$WQ possesses slightly higher corrosion resistance than non-treated nanotubular alloy.

  • PDF

Hf, Ta가 첨가된 Ti-l5Sn-4Nb계 생체용 합금의 미세조직 및 기계적 성질에 관한 연구 (A Study on Microstructure and Mechanical Properties of Hf, Ta Added Ti-l5Sn-4Nb system Alloys for Biomaterial)

  • 김대환;이경구;박효병;이도재
    • 한국표면공학회지
    • /
    • 제33권4호
    • /
    • pp.251-260
    • /
    • 2000
  • Ta and Hf added Ti-l5Sn-4Nb alloys without V and Al elements for biomaterial were melted by arc furnace in response to recent concerns about the long term safety of Ti-6Al-4V alloy. All specimens were homogenized at $1000^{\circ}C$ and solution treatment was performed at $812^{\circ}C$ and aging treatment at $500^{\circ}C$. The microstructure and mechanical properties were analysed by optical micrograph, hardness tester and instron. Ti-l5Sn-4Nb system alloys showed widmanstatten microstructure which is typical microstructure in $\alpha$$\beta$ type Ti alloys. The Ti-l5Sn-4Nb-2Hf and Ti-l5Sn-4Nb-2Ta alloys showed better hardness and tensile strength compared with Ti-6Al-4V. The result of XPS analysis, Ti-l5Sn-4Nb alloy in air atmosphere consisted of $TiO_2$, SnO and NbO.

  • PDF