• 제목/요약/키워드: Ti-6Al-4V합금

검색결과 233건 처리시간 0.026초

Ti-6Al-4V 합금 표면에 생성된 $TiO_2$ 나노튜브의 전석회화 처리 (Precalcification Treatment of $TiO_2$ Nanotube on Ti-6Al-4V Alloy)

  • 김시정;박지만;배태성;박은진
    • 대한치과보철학회지
    • /
    • 제47권1호
    • /
    • pp.39-45
    • /
    • 2009
  • 연구목적: 최근 치과용 임플란트의 임상 경향이 전체 치료기간을 줄일 수 있는 방법에 관심이 집중됨에 따라 불활성의 티타늄 임플란트 표면에 활성을 부여하기 위한 다양한 표면처리 방법이 검토되고 있다. 본 연구에서는 높은 강도가 요구되는 부위의 임플란트 재료로서 사용되고 있지만 표면 특성이 순 티타늄에 비해 떨어지는 Ti-6Al-4V 합금의 골전도성을 개선할 목적으로 시행되었다. 연구 재료 및 방법: $20{\times}10{\times}2\;mm$의 Ti-6Al-4V 합금판을 준비한 다음 $TiO_2$ 나노튜브를 형성하기 위해 DC 정전원 장치의 양극과 음극에 각각 시편과 백금판을 결선하고 0.5 M $Na_2SO_4$와 1.0 wt% NaF를 함유하는 전해액을 사용하여 전압 20 V와 전류밀도 $30\;㎃/cm^2$ 조건에서 2시간 동안 양극산화 처리하였다. $TiO_2$ 나노튜브 형성 후 산화 피막층의 결정화를 유도하기 위해 $600^{\circ}C$에서 2시간 동안 열처리하였고, 표면활성도를 개선하기 위해 0.5 M $Na_2HPO_4$ 수용액 24시간 침적과 $Ca(OH)_2$ 포화 수용액에 5시간 침적을 시행하였다. 준비한 시편의 표면 반응성을 조사하기 위해 pH와 무기이온의 농도를 사람의 혈장과 유사하게 조절한 Hanks 용액 (H2387, Sigma Chemical Co., USA)에 2주간 침적하였다. 결과: 20 V에서의 양극산화처리로 직경 48.0 - 65.0 ㎚ 범위의 무정형의 $TiO_2$ 나노튜브가 전체 표면에 걸쳐서 균일하게 생성되는 양상을 보였다. $TiO_2$ 나노튜브는 $600^{\circ}C$에서 2시간 열처리 후 상대적으로 강한 anatase 피크와 함께 rutile 피크가 관찰되었다. $TiO_2$ 나노튜브의 표면활성도는 0.5 M $Na_2HPO_4$ 수용액 24시간 침적과 $Ca(OH)_2$ 포화수용액에 5시간 침적으로 개선되었다. 열처리와 전석회화 처리 후 SBF에 침적한 결과, $TiO_2$ rutile 피크의 상대적 강도는 크게 증가되었지만 HA의 석출은 저하되는 경향을 보였다. 결론: 이상의 결과로 미루어 볼 때, 양극산화 처리한 $TiO_2$ 나노튜브는 $600^{\circ}C$에서의 열처리에 의해 피막층이 안정화되고, 0.5 M $Na_2HPO_4$ 수용액 24시간 침적과 $Ca(OH)_2$ 포화수용액에 5시간 침적으로 표면에 인산칼슘층을 형성하는 것이 표면활성도를 개선하는데 유효함을 알 수 있었다.

Ti-6Al-4V합금의 고상 확산접합에 관한 연구 (A Study on the Solid State Diffusion Bonding of Ti-6Al-4V Alloy)

  • 강호정;강춘식
    • Journal of Welding and Joining
    • /
    • 제15권6호
    • /
    • pp.32-40
    • /
    • 1997
  • Solid state diffusion bonding is the joining process performed by creep and diffusion, which is accelerated by heating below melting temperature and proper pressing, in vacuum or shielding gas atmosphere. By this process we can obtain sufficient joint which can't be expected from the fusion welding. For Ti-6Al-4V alloy, the optimum solid state diffusion bonding condition and mechanical properties of the joint were found, and micro void morphology at bond interface was observed by SEM. The results of tensile test showed sufficient joint, whose mechanical properties are similar to that of base metal. 850$^{\circ}$C, 3MPa is considered as the optimum bonding condition. Void morphology at interface is long and flat at the initial stage. As the percentage of bonded area increases, however, small and round voids are found. Variation of void shape can be explained as follows. As for the void shrinkage mechanism, at the initial stage, power law creep is the dominant, but diffusion mechanism is dominant when the percentage of bonded area is increased.

  • PDF

초소성 Ti-6Al-4V 합금에서의 불균일 파손 (Non-uniform Failure in Superplastic Ti-6Al-4V Alloy)

  • 김태원
    • 소성∙가공
    • /
    • 제9권6호
    • /
    • pp.663-669
    • /
    • 2000
  • A material model has been presented, at the continuum level, for the representation of superplastic deformation coupled with microstructural evolution. The model presented enables the effects of the spatial variation of distributions of grain size to be predicted at the process level. The model has been tested under conditions of both homogeneous and inhomogeneous stress and strain by carrying out detailed comparison of predicted distributions of grain size and their evolutions with experimentally obtained data. Experimental measurements have shown the extent of the spatial variation of the distribution of grain size that exists in the titanium alloy, Ti-6Al-4V. It is shown that whilst not large, the variations in grain size distributions are sufficient to lead to the development of inhomogeneous deformation in test pieces, which ultimately result in localisation of strain and failure.

  • PDF

Ti-6Al-4V 합금의 단시간 고온 노출 시 모재 및 용접부의 인장강도 특성 (Effects on Tensile Strength of Base and Weld Metal of Ti-6Al-4V Alloy in Short Time Exposure to High Temperature)

  • 채병찬
    • 한국군사과학기술학회지
    • /
    • 제17권4호
    • /
    • pp.413-421
    • /
    • 2014
  • Since the structural temperature of a flight vehicle flying at high speed rises rapidly due to aerodynamic heating, it is necessary for optimum structural design to obtain proper material properties at high temperature by taking into account of its operational environment. For a special alloy, analysis data on strength change due to exposure time to high temperature are very limited, and most of them are for an exposure time longer than 30 minutes for long term operations. In this study, base and weld metal samples of Ti-6Al-4V alloy had been prepared and high temperature tensile tests with induction heating were performed, and then high temperature strength characteristics and strength recovery characteristics through cooling have been analyzed. Pre-tests to determine maximum heating rate were performed, and response characteristics for temperature control were confirmed. As a result, high temperature tensile strength appeared to be lower than that of room temperature, but it was higher than that of high temperature of 30 minite exposure listed in MMPDS. In strength recovery through cooling Ti-6Al-4V alloy has shown higher recovery rate compared with other alloys.

타이타늄 합금 분말 형상 및 치밀화 기구에 따른 미세조직 및 기계적 물성 영향 연구 (Effects of Powder Shape and Densification Mechanism on the Microstructures and Mechanical Properties of Ti-6Al-4V Components)

  • 김영무;권영삼;송영범;이성호
    • 한국분말재료학회지
    • /
    • 제26권4호
    • /
    • pp.311-318
    • /
    • 2019
  • The objective of this study is to investigate the influence of powder shape and densification mechanism on the microstructure and mechanical properties of Ti-6Al-4V components. BE powders are uniaxially and isostatically pressed, and PA ones are injection molded because of their high strengths. The isostatically compacted samples exhibit a density of 80%, which is higher than those of other samples, because hydrostatic compression can lead to higher strain hardening. Owing to the higher green density, the density of BE-CS (97%) is found to be as high as that of other samples (BE-DS (95%) and P-S (94%)). Furthermore, we have found that BE powders can be consolidated by sintering densification and chemical homogenization, whereas PA ones can be consolidated only by simple densification. After sintering, BE-CS and P-S are hot isostatically pressed and BE-DS is hot forged to remove residual pores in the sintered samples. Apparent microstructural evolution is not observed in BE-CSH and P-SH. Moreover, BE-DSF exhibits significantly fine grains and high density of low-angle grain boundaries. Thus, these microstructures provide Ti-6Al-4V components with enhanced mechanical properties (tensile strength of 1179 MPa).

인산염계 주형재와 치과주조용 Ti-Zr-Cr계 합금의 계면반응 (Surface Reaction between Phosphate bonded Investment and Ti-Zr-Cr based Alloy for Dental castings)

  • 정종현;주규지
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.73-78
    • /
    • 2005
  • The surface-reacted layer of titanium castings greatly affects their mechanical properties. This study analyzed the interfacial zone of Ti-20%Zr-5%Cr alloy castings obtained from phosphate bonded investment and examined the relationship between the surface-reacted layer and hardness. The Vickers hardness of cast disks were tested at 20$\mu m$ intervals from the surface to 120$\mu m$ in depth. The cross-section was observed metallurgically, and line profile of the reacted layer was conducted under the EDX. The surface-reacted layer of Ti-20%Zr-5%Cr alloy is showed a similar tendency to Ti-6%Al-4%V alloy in thickness, and also Si diffusion in multiple reacted layer of Ti-20%Zr-5%Cr alloy is less than cp Ti and similar to Ti-6%Al-4%V alloy. The Vickers hardness in the surface layer was greater than in the inner part, and the Vickers hardness of Ti-20%Zr-5%Cr alloy ranged 650 to 390 and cp Ti ranged 810 to 160, Ti-6%Al-4%V alloy ranged 710 to 530 respectively.

  • PDF

Ti-6Al-4V 합금의 고온 성형시 미세조직 예측에 관한 연구 (Prediction of Microstructure During High Temperature Forming of Ti-6Al-4V Alloy)

  • 이유환;신태진;박노광;심인옥;황상무;이종수
    • 한국군사과학기술학회지
    • /
    • 제7권4호
    • /
    • pp.70-78
    • /
    • 2004
  • A study has been made to investigate the high temperature deformation behavior of Ti-6Al-4V alloyand to predict the final microstructure under given forming conditions. Equiaxed and $Widmanst\ddot{a}tten$ microstructures of Ti-6Al-4V alloys were prepared as initial microstructures. By performing the compression tests at high temperatures$(700\~1100^{\circ}C)$ and at a wide range of strain rates$(10^{-4}\~10^2/s)$, various parameters such as strain rate sensitivity(m) and activation energy(Q) were calculated and used to establish constitutive equations. When the specimens were deformed up to strain 0.6, equiaxed microstructure did not show any significant changes in microstructure, while $Widmanst\ddot{a}tten$ microstructure revealed considerable flow softening, which was attributed to the globularization of a platelet at the temperature range of $800\~970^{\circ}C$ and at the strain rate range of $10^{-4}\~10^{-2}/s$. To predict the final microstructure after forming, finite element analysis was performed considering the microstructural evolution during the deformation. The grain size and the volume fraction of second phase of deformed body were predicted and compared with the experimental results.

Ti-6Al-4V 티타늄 합금나사의 절삭 특성 (Machining Characteristics of Ti-6Al-4V Thread)

  • 김형선;최종근;김동민;류민영
    • 한국생산제조학회지
    • /
    • 제18권5호
    • /
    • pp.514-520
    • /
    • 2009
  • Titanium is one of the most attractive materials due to their superior properties of high specific strength and excellent corrosion resistance. The applications in aerospace and medical industries demand machining process more frequently to obtain more precise products. Machining of titanium is faced with strong challenges such as increased component complexity i.e. airframe components manufacturing processes. The machining cost on titanium have traditionally demanded high cutting tool consumable cost and slow machining cycle times. Similarly, the high wear of the cutting tools restricts the cutting process capabilities. Titanium screws applied to fasten parts In the several corrosion environment. In the thread cutting of titanium alloys, the key point for successful work is to select proper cutting methods and tool materials. This study suggests a guidance fur selecting the cutting methods and the tool materials to improve thread quality and productivity. Some experiments investigate surface roughnesses, cutting forces and tool wear with change of various cutting parameters including tool materials, cutting methods, cutting speed. As the results, the P10 type insert tip was assured of the best for thread cutting of Ti-6Al-4V titanium alloy. Also the initial depth of infeed was desirable to use the value below 0.5mm as the uniform cutting area method is applied.

  • PDF

Ti-Al-Fe계 합금의 고온산화거동에 미치는 Fe의 영향 (Effect of Fe on the High Temperature Oxidation of Ti-Al-Fe Alloys)

  • 윤장원;현용택;김정한;염종택;윤석영
    • 한국재료학회지
    • /
    • 제21권7호
    • /
    • pp.357-363
    • /
    • 2011
  • In this paper, high temperature oxidation behavior of newly developed alloys, Ti-6Al-4Fe and Ti-6Al-1Fe, is examined. To understand the effect of Fe on the air oxidation behavior of the Ti-Al-Fe alloy system, thermal oxidation tests are carried out at $700^{\circ}C$ and $800^{\circ}C$ for 96 hours. Ti-6Al-4V alloy is also prepared and tested under the same conditions for comparison with the developed alloys. The oxidation resistance of the Ti-Al-Fe alloy system is superior to that of Ti-6Al-4V alloy. Ti-6Al-4V shows the worst oxidation resistance for all test conditions. This is not a result of the addition of Fe, but rather it is due to the elimination of V, which has deleterious effects on high temperature oxidation. The oxidation of the Ti-Al-Fe alloy system follows the parabolic rate law. At $700^{\circ}C$, Fe addition does not have a noticeable influence on the amount of weight gain of all specimens. However, at $800^{\circ}C$, Ti-6Al-4Fe alloy shows remarkable degradation compared to Ti-6Al-1Fe and Ti-6Al. It is discovered that the formation of $Al_2O_3$, a diffusion resistance layer, is remarkably hindered by a relative decrease of the ${\alpha}$ volume fraction. This is because Fe addition increases the volume fraction of ${\beta}$ phase within the Ti-6Al-xFe alloy system. Activities of Al, Ti, and Fe with respect to the formation of oxide layers are calculated and analyzed to explore the oxidation mechanism.

온간 단조공정을 이용한 타이타늄합금 볼트 제조기술 (Manufacturing Technology of Titanium Alloy Bolts Using Warm Forging Process)

  • 임성근;김재호;김정한;이채훈;홍재근;염종택
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.80-81
    • /
    • 2009
  • Ti-6Al-4V alloy has been widely used for aerospace and power generation applications because of low density and attractive mechanical and corrosion resistant properties. However, the titanium alloy bolt is generally manufactured by cutting and rolling because of their poor workability. In order to achieve the mass production of titanium alloy bolts, it needs to be solved some manufacturing problems such as the sticking between workpiece and dies, the formation of the forming defects during the forging and so on. In this study, the manufacturing technology of titanium alloy bolts using warm forging process was introduced. The aim of present work is to develop a warm forging technology for high strength Ti-6Al-4V bolts.

  • PDF