DOI QR코드

DOI QR Code

Effects of Powder Shape and Densification Mechanism on the Microstructures and Mechanical Properties of Ti-6Al-4V Components

타이타늄 합금 분말 형상 및 치밀화 기구에 따른 미세조직 및 기계적 물성 영향 연구

  • Received : 2019.08.04
  • Accepted : 2019.08.22
  • Published : 2019.08.28

Abstract

The objective of this study is to investigate the influence of powder shape and densification mechanism on the microstructure and mechanical properties of Ti-6Al-4V components. BE powders are uniaxially and isostatically pressed, and PA ones are injection molded because of their high strengths. The isostatically compacted samples exhibit a density of 80%, which is higher than those of other samples, because hydrostatic compression can lead to higher strain hardening. Owing to the higher green density, the density of BE-CS (97%) is found to be as high as that of other samples (BE-DS (95%) and P-S (94%)). Furthermore, we have found that BE powders can be consolidated by sintering densification and chemical homogenization, whereas PA ones can be consolidated only by simple densification. After sintering, BE-CS and P-S are hot isostatically pressed and BE-DS is hot forged to remove residual pores in the sintered samples. Apparent microstructural evolution is not observed in BE-CSH and P-SH. Moreover, BE-DSF exhibits significantly fine grains and high density of low-angle grain boundaries. Thus, these microstructures provide Ti-6Al-4V components with enhanced mechanical properties (tensile strength of 1179 MPa).

Keywords

References

  1. M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens: Titanium and titanium alloys, C. Leyens and M. Peters (Ed.), Wilely-VCH GmnbH and Co., Weinheim, Germany (2003) 1.
  2. D. M. Bowden and W. H. Peter: Near-net shape fabrication using low-cost titanium alloy powders, in, The Boeing Company (2012) 28.
  3. K. Faller and F. H. Froes: JOM, 53 (2001) 27.
  4. F. H. Froes, D. Eylon, G. E. Eichelman and H. M. Burte: JOM, 32 (1980) 47. https://doi.org/10.1007/BF03354547
  5. F. H. Froes and D. Eylon: Powder Metall. Int., 17 (1985) 163.
  6. V. Moxson, O. N. Senkov and F. H. Froes: JOM, 52 (2000) 24.
  7. F. H. Froes, S. J. Mashl, J. C. Hebeisen, V. S. Moxson and V. A. Duz: JOM, 56 (2004) 46.
  8. F. H. Froes, M. N. Gungor and M. A. Imam: JOM, 59 (2007) 28.
  9. S. M. Abkowitz, S. Abkowitz and H. Fisher: Met. Powder Rep., 66 (2011) 16.
  10. T. Fujita, A. Ogawa, C. Ouchi and H. Tajima: Mater. Sci. Eng., A, 213 (1996) 148. https://doi.org/10.1016/0921-5093(96)10232-X
  11. O. M. Ivasishin, V. M. Anokhin, A. N. Demidik and D. G. Savvakin: Key Eng. Mater., 188 (2000) 55. https://doi.org/10.4028/www.scientific.net/KEM.188.55
  12. O. M. Ivasishin, D. G. Savvakin, F. H. Froes and K. A. Bondareva: Powder Metall. Met. Ceram., 41 (2002) 382. https://doi.org/10.1023/A:1021117126537
  13. L. Bolzoni, P. G. Esteban, E. M. Ruiz-Navas and E. Gordo: J. Mech. Behav. Biomed. Mater., 15 (2012) 33. https://doi.org/10.1016/j.jmbbm.2012.05.019
  14. Y. Kim, J. Lee, B. Lee, H. J. Ryu and S. H. Hong: Metall. Mater. Trans. A, 47 (2016) 4616. https://doi.org/10.1007/s11661-016-3607-3
  15. D. P. Delo and H. R. Piehler: Acta Mater., 47 (1999) 2841. https://doi.org/10.1016/S1359-6454(99)00132-9
  16. K. Zhang, J. Mei, N. Wain and X. Wu: Metall. Mater. Trans. A, 41 (2010) 1033. https://doi.org/10.1007/s11661-009-0149-y
  17. Y. Kim, E.-P. Kim, Y.-B. Song, S. H. Lee and Y.-S. Kwon: J. Alloys Compd., 603 (2014) 207. https://doi.org/10.1016/j.jallcom.2014.03.022
  18. R. P. Guo, L. Xu, J. Wu, Z. G. Lu and R. Yang: Mater. Sci. Forum, 849 (2016) 760. https://doi.org/10.4028/www.scientific.net/MSF.849.760
  19. S. Yang, J.-N. Gwak, J.-Y. Yun, J.-Y. Kim, S. Park, H.-S. Kim, Y.-J. Kim and Y.-H. Park: J. Korean Powder Metall Inst., 20 (2013) 467. https://doi.org/10.4150/KPMI.2013.20.6.467
  20. A. M. Beese and B. E. Carroll: JOM, 68 (2016) 724. https://doi.org/10.1007/s11837-015-1759-z
  21. B. Dutta and F. H. Froes: Titanium powder metallurgy, M. A. Qian and F. H. Froes (Ed.), Butterworth-Heinemann, Oxford, United Kingdom (2015) 477.
  22. T. Machry, D. Eatock, J. Meyer, A. Antonysamy, A. Ho and P. Prangnell: Powder Metall., 59 (2016) 41. https://doi.org/10.1080/00325899.2015.1123800
  23. F. H. Froes: Advances in powder metallurgy: I. Chang and Y. Zhao (Ed.), Woodhead Publishing, Philadelphia, USA (2013) 2021.
  24. S. Abkowitz, S. Abkowitz and H. Fisher: Titanium powder metallurgy, M. A. Qian and F. H. Froes (Ed.), Butterworth-Heinemann, Oxford, United Kingdom (2015) 21.
  25. S. Abkowitz, S. Abkowitz and H. Fisher: Titanium powder metallurgy, M. A. Qian and F. H. Froes (Ed.), Butterworth-Heinemann, Oxford, United Kingdom (2015) 299.
  26. Y. Kim, Y.-B. Song and S. H. Lee: J. Korean Powder Metall Inst., 25 (2018) 109. https://doi.org/10.4150/KPMI.2018.25.2.109
  27. K. T. Kim: Int. J. Solids Struct., 24 (1988) 937. https://doi.org/10.1016/0020-7683(88)90042-X