• 제목/요약/키워드: Ti based alloy

검색결과 239건 처리시간 0.025초

Microstructure and Hardness of TiC Particle-reinforced Fe Self-fluxing Alloy Powders Based Hybrid Composite Prepared by High Energy Ball Milling

  • Park, Sung-Jin;Song, Yo-Seung;Nam, Ki-Seok;Chang, Si-Young
    • 한국분말재료학회지
    • /
    • 제19권2호
    • /
    • pp.122-126
    • /
    • 2012
  • The Fe-based self-fluxing alloy powders and TiC particles were ball-milled and subsequently compacted and sintered at various temperatures, resulting in the TiC particle-reinforced Fe self-fluxing alloy hybrid composite, and the microstructure and micro-hardness were investigated. The initial Fe-based self-fluxing alloy powders and TiC particles showed the spherical shape with a mean size of approximately 80 ${\mu}m$ and the irregular shape of less than 5 ${\mu}m$, respectively. After ball-milling at 800 rpm for 5 h, the powder mixture of Fe-based self-fluxing alloy powders and TiC particles formed into the agglomerated powders with the size of approximately 10 ${\mu}m$ that was composed of the nanosized TiC particles and nano-sized alloy particles. The TiC particle-reinforced Fe-based self-fluxing alloy hybrid composite sintered at 1173 K revealed a much denser microstructure and higher micro-hardness than that sintered at 1073 K and 1273 K.

Ti-Ni계 합금분말의 미세조직 및 상변태거동에 미치는 밀링조건의 영향 (The Effect of Milling Conditions on Microstructure and Phase Transformation Behavior of Ti-Ni Based Alloy Powders)

  • 강상호;남태현
    • 한국분말재료학회지
    • /
    • 제8권1호
    • /
    • pp.42-49
    • /
    • 2001
  • Ti-50Ni(at%) and Ti-40Ni-10Cu(at%) alloy powders have been fabricated by ball milling method, and their microstructure and phase transformation behavior were investigated by means of scanning electron microscopy/energy dispersive spectrometry, differential scanning calorimetry (DSC), X-ray diffractions and transmission electron microscopy. In order to investigate the effect of ball milling conditions on transformation behavior, ball milling speed and time were varied. Ti-50Ni alloy powders fabricated with the milling speed more than 250 rpm were amorphous, while those done with the milling speed of 100rpm were crystalline. In contrast to Ti-50Ni alloy powders, Ti-40Ni-10Cu alloy powders were crystalline, irrespective of ball milling conditions. DSC peaks corresponding to martensitic transformation were almost discernable in alloy powders fabricated with the milling speed more than 250 rpm, while those were seen clearly in alloy powders fabricated with the milling speed of 100 rpm. This was attributed to the fact that a strain energy introduced during ball milling suppressed martensitic transformation.

  • PDF

인산염계 주형재와 치과주조용 Ti-Zr-Cr계 합금의 계면반응 (Surface Reaction between Phosphate bonded Investment and Ti-Zr-Cr based Alloy for Dental castings)

  • 정종현;주규지
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.73-78
    • /
    • 2005
  • The surface-reacted layer of titanium castings greatly affects their mechanical properties. This study analyzed the interfacial zone of Ti-20%Zr-5%Cr alloy castings obtained from phosphate bonded investment and examined the relationship between the surface-reacted layer and hardness. The Vickers hardness of cast disks were tested at 20$\mu m$ intervals from the surface to 120$\mu m$ in depth. The cross-section was observed metallurgically, and line profile of the reacted layer was conducted under the EDX. The surface-reacted layer of Ti-20%Zr-5%Cr alloy is showed a similar tendency to Ti-6%Al-4%V alloy in thickness, and also Si diffusion in multiple reacted layer of Ti-20%Zr-5%Cr alloy is less than cp Ti and similar to Ti-6%Al-4%V alloy. The Vickers hardness in the surface layer was greater than in the inner part, and the Vickers hardness of Ti-20%Zr-5%Cr alloy ranged 650 to 390 and cp Ti ranged 810 to 160, Ti-6%Al-4%V alloy ranged 710 to 530 respectively.

  • PDF

치과주조용 Ti-Zr-(Cu)계 합금의 경도 및 미세조직 (Hardness and Microstructures of Ti-Zr-(Cu) based Alloys for Dental Castings)

  • 주규지
    • 대한치과기공학회지
    • /
    • 제27권1호
    • /
    • pp.65-71
    • /
    • 2005
  • Experimental Ti-13%Zr and Ti-13%Zr-5%Cu alloys were made in an argon-arc melting furnace. The grade 2 CP Ti was used to control. The alloys were cast into phosphate bonded $SiO_2$ investment molds using an argon-arc casting machine, and The hardness and microstructures of the castings were investigated in order to reveal their possible use for new dental casting materials and to collect useful data for alloy design. The hardness of the Ti-13%Zr-5%Cu alloy(379Hv) became higher than that of Ti-13%Zr(317Hv) alloy, and the hardness of this alloys became higher than that of CP Ti(247Hv). Increasing in the hardness of the Ti-13%Zr-5%Cu alloy was considered to be solid solution hardening as the Ti-Zr system shows a completely solid solution for both high temperature $\beta$phase and low temperature $\alpha$ phase and also the inclusion of the eutectoid structure($\alpha Ti+Ti_{2}Cu$). No martensitic structures are observed in the specimen made of CP Ti, but Ti-13%Zr and Ti-13%Zr-5%Cu alloys show a kind of martensitic structure. Ti-13%Zr-5%Cu shows the finest microstructure. From these results, it was concluded that new alloys for dental casting materials should be designed as Ti-Zr-Cu based alloys.

  • PDF

전자선 용해법에 의한 sponge Ti 및 Ti-6Al-4V 합금의 정련 및 용해에 관한 연구 (Study on refining and melting of sponge Ti and Ti-6Al-4V alloy by electron beam melting)

  • 김휘준;백홍구;윤우영;이진형;강춘식
    • 한국결정성장학회지
    • /
    • 제7권2호
    • /
    • pp.224-234
    • /
    • 1997
  • 적은 양의 침입형 불순물을 함유한 고순도 재료를 제조하기 위해 70 ㎾ 걸자 빔용해기를 제작하였으며 이를 이용해서 sponge Ti와 Ti-6Al-4V 합금을 용융시켰다. 전자 빔 용해법을 이용해 정련된 sponge Ti에 대한 실험 결과를 바탕으로 초기 용해 180초 동안에는 Ti의 순도가 증가하였지만 그 이후로는 크게 변화지 않는 것을 알 수 있었다. 그리고 Ti의 정련 결과, 침입형 불순물과 금속 불순물의 양을 포함한 전체 불순물의 양이 900 ppm인 고순도(99.9 wt%)의 Ti를 얻었다. Ti-6Al-4V 합금의 전자 빔 용해에 대한 실험 결과로부터 손실되는 Al의 양은 열역학적 데이터, regular solution model 그리고 model of solute removal kinetics를 통해서 판단할 수 있음을 알 수 있었으며, 이 모델들로부터 계산된 합금 조성과 실험을 통해서 구한 합금 조성이 일치하였다. 그리고 Ti-6Al-4V 합금의 조성은 매우 균일하였으며 이것은 EPMA line scanning을 통해서 확인하였다.

  • PDF

Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구 (A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • 제14권4호
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

A Study on the Electrode Characteristics of a New High Capacity Non-Stoichiometry Zr-Based Laves Phase Alloys for Anode Materials of Ni/MH Secondary Battery

  • Lee Sang-Min;Yu Ji-Sang;Lee Ho;Lee Jai-Young
    • 전기화학회지
    • /
    • 제3권2호
    • /
    • pp.72-75
    • /
    • 2000
  • For the purpose of developing the non-stoichiometric Zr-based Laves phase alloy with higher capacity and better performance for electrochemical application, extensive work has been carried out in KAIST. After careful alloy design of $ZrMn_2-based$ hydrogen storage alloys through varing their stoichiometry while susbstituting or adding some alloying elements, the $Zr-Ti-(Lh-V-Ni)_{2.2},\;Zr-Ti-(Mn-V-Cr-Ni)_{1.8\pm0.1}$ with high capacity and better performance was developed. Consequently the $Zr-Ti-(Mn-V-Ni)_{2.2}$ alloy has a high discharge capacity of 394mAh/g and shows a high rate capability equaling to that of commercialized $AB_5$ type alloys. On the other hand, in order to develop the hydrogen storage alloy with higher discharge capacity, the hypo-stoichiometric $Zr(Mn-V-Ni)_{2-\alpha}$ alloys substituted by Ti are under developing. As the result of competitive roles of Ti and $stocihiometry({\alpha})$, the discharge capacity of $Zr-Ti-(Mn-V-Cr-Ni)_{l.8\pm0.1}$ alloys is about 400mAh/g(410 mAh/g, which shows the highest level of performance in the Zr-based alloy developed. Our sequential endeavor is improving the shortcoming of Zr-based Laves phase alloy for commercialization, i.e., poor activation property and low rate capability, etc. It is therefore believed that the commercialization of Zr-based Laves phase hydrogen storage alloy for Ni-MH rechargeable battery is in near future.

인체에 유해하지 않은 원소를 사용한 Ti 계 벌크 비정질 합금 개발 (Development of Ti-based Bulk Metallic Glasses with Non-toxic Elements)

  • 이철규;이승훈
    • 한국주조공학회지
    • /
    • 제32권4호
    • /
    • pp.177-180
    • /
    • 2012
  • Ti-based bulk metallic glasses with high glass forming ability were developed through a systematic alloy design technique. The main alloy design strategy was the selection of alloying elements that may not be toxic in the human body. The $Ti_{45.0}Cu_{40.1}Zr_{12.7}Si_{2.2}$ alloy could be cast into an amorphous rod with the diameter of 3 mm by a suction casting technique using Cu mold. The compressive strength of the amorphous rod was measured as 1826 MPa. Since the Ti-based amorphous alloys consist of non-toxic elements, they can be widely used as bio-materials and eco-materials with unique and beneficial properties.

생체용 Ti-Zr-Pd계 합금의 양극분극특성 (Anodic Polarization Properties of Ti-Zr-Pd Based Alloys for Biomedical Applications)

  • 정종현
    • 대한치과기공학회지
    • /
    • 제23권1호
    • /
    • pp.21-30
    • /
    • 2001
  • For biomedical applications. Ti-X%Zr-Y%Pd(X: $10{\sim}20$, Y:0.2 or 0.4) based alloys not containing harmful Al and V were newly designed, and polarization curves for their alloys were measured at $37^{\circ}C$ in 5% HCl solution in order to understand effects of Zr on the corrosion. From the results of anodic polarization behavior, it was found that the corrosion resistance increased with increasing Zr content. The results show their potential to develope Ti-based alloys for biomedical materials. The Ti-20%Zr-0.2%Pd alloy shows excellent corrosion resistance and was superior to those of the Ti. Ti-6%Al-4%V ELI alloy, Co-30%Cr-6%Mo alloy and STS 316L stainless steel.

  • PDF

순수 타이타늄 기반 산화물분산강화 합금의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of Oxide Dispersion Strengthened alloy Based on Commercially Pure Titanium)

  • 박태성;김정한
    • 한국분말재료학회지
    • /
    • 제25권4호
    • /
    • pp.327-330
    • /
    • 2018
  • This study is conducted as a preliminary research to verify the feasibility of Ti-based Oxide dispersion strengthened (ODS) alloy. Pure-Ti powder is mixed with $Y_2O_3$ powder and subsequently, mechanically alloyed at $-150^{\circ}C$. The Ti-based ODS powder is hot-isostatically pressed and subsequently hot-rolled for recrystallization. The microstructure consists of elongated grains and Y excess fine particles. The oxide particle size is larger than that of the typical Fe-based ODS steel. Tensile test shows that the tensile ductility is approximately 25%, while the strength is significantly higher than that of pure Ti. The high-temperature hardness of the Ti-ODS alloy is also significantly higher than that of pure Ti at all temperatures, while being lower than that of Ti-6Al-4V. The dimple structure is well developed, and no evidence of cleavage fracture surface is observed in the fracture surface of the tensile specimen.