• Title/Summary/Keyword: Thymidine Kinase

Search Result 85, Processing Time 0.027 seconds

Role of cAMP, EGF, IGF-I and Protein Phosphorylation in Mammary Development II. Interaction Effects of EGF, IGF-I and Photoreactive Cyclic AMP on DNA Synthesis and Protein Phosphorylation (유선발달에 있어서 cAMP, EGF, IGF-I 및 단백질 인산화 작용의 역할 II. EGF, IGF-I 및 Photoreactive Cyclic AMP의 상호작용과 단백질 인산화 작용)

  • 여인서
    • Korean Journal of Animal Reproduction
    • /
    • v.19 no.2
    • /
    • pp.95-104
    • /
    • 1995
  • Mouse mammary epithelial cells(NMuMG) were maintained onto 6-well plates (3$\times$105 cells/well) or chambered slide (1$\times$104 cells/well), in DMEM supplemented with 10% fetal calf serum. After serum starvation for 24 hours, DMNB (1$\mu$M) was added and exposed to UV light (300nm, 3 second pulse) after 2 hours from DMNB addition in order to activate DMNB which induces a rapid transient increase in intracellular cAMP upon UV irradiation. EGF (100ng/ml) and/or IGF-I (10ng/ml) were treated at the time of UV irradiation. Nuclear labeling index was estimated as percent of nuclear labeled cells(percent of S phase of cells) by incorporation of 3H-thymidine into DNA(1 hour pulse with 1$\mu$Ci/ml). DMNB(1$\mu$M), EGF (100ng/ml) and/or IGF-I (10ng/ml) signifciantly increased nuclear labeling index than those of control (P<0.05). Addition of DMNB+EGF or DMNB+EGF+IGF-I showed the interaction effect in nuclear labeling index (P<0.05). Protein kinase A activities by addition of EGF, IGF-I or EGF+IGF-I were 10.5, 9.8 or 9.4 unit/mg protein, respectively, and no statistical difference was found in comparison with control (P>0.05). Additon of DMNB+EGF showed the moderate interaction effect on tyrosyl kinase activity (P<0.1). In the fluorography analysis, there were no specific protein phosphorylation patterns were found at 1 or 15 minute by addition of DMNB. EGF and/or IGF-I. These results suggest that the interaction effect in nuclear labeling index by addition DMNB and EGF could be mediated through the modulation of tyrosyl kinase activity by cAMP.

  • PDF

Anti-Diabetic Effects of Dung Beetle Glycosaminoglycan on db Mice and Gene Expression Profiling

  • Ahn, Mi Young;Kim, Ban Ji;Yoon, Hyung Joo;Hwang, Jae Sam;Park, Kun-Koo
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.151-162
    • /
    • 2018
  • Anti-diabetes activity of Catharsius molossus (Ca, a type of dung beetle) glycosaminoglycan (G) was evaluated to reduce glucose, creatinine kinase, triglyceride and free fatty acid levels in db mice. Diabetic mice in six groups were administrated intraperitoneally: Db heterozygous (Normal), Db homozygous (CON), Heuchys sanguinea glycosaminoglycan (HEG, 5 mg/kg), dung beetle glycosaminoglycan (CaG, 5 mg/kg), bumblebee (Bombus ignitus) queen glycosaminoglycan (IQG, 5 mg/kg) and metformin (10 mg/kg), for 1 month. Biochemical analyses in the serum were evaluated to determine their anti-diabetic and anti-inflammatory actions in db mice after 1 month treatment with HEG, CaG or IQG treatments. Blood glucose level was decreased by treatment with CaG. CaG produced significant anti-diabetic actions by inhiting creatinine kinase and alkaline phosphatase levels. As diabetic parameters, serum glucose level, total cholesterol and triglyceride were significantly decreased in CaG5-treated group compared to the controls. Dung beetle glycosaminoglycan, compared to the control, could be a potential therapeutic agent with anti-diabetic activity in diabetic mice. CaG5-treated group, compared to the control, showed the up-regulation of 48 genes including mitochondrial yen coded tRNA lysine (mt-TK), cytochrome P450, family 8/2, subfamily b, polypeptide 1 (Cyp8b1), and down-regulation of 79 genes including S100 calcium binding protein A9 (S100a9) and immunoglobulin kappa chain complex (Igk), and 3-hydroxy-3-methylglutaryl-CoenzymeAsynthase1 (Hmgcs1). Moreover, mitochondrial thymidine kinase (mt-TK), was up-regulated, and calgranulin A (S100a9) were down-regulated by CaG5 treatment, indicating a potential therapeutic use for anti-diabetic agent.

Tumor targeted gene therapy (종양 표적 유전자 치료)

  • Kang, Joo-Hyun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.5
    • /
    • pp.237-242
    • /
    • 2006
  • Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment has led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest In suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner.

Glial Cell-specific Regulation of the JC virus Early Promoter by Silencer and DNA Methylation (Silencer 및 DNA methylation에 의한 JC virus early promoter의 뇌교세포 특이적인 조절)

  • 김희선;우문숙
    • YAKHAK HOEJI
    • /
    • v.46 no.2
    • /
    • pp.143-148
    • /
    • 2002
  • The human polyomavirus JC virus is the etiologic agent of progressive multifocal leukoencephalopathy (PML). The JC virus early promoter directs cell-specific expression of the viral replication factor large T antigen, thus transcriptional regulation constitutes a major mechanism of glial tropism in PML. Here we found that pentanucleotide sequence immediately upstream of the TATA sequence functions as a cell-specific silencer in the JC virus transcription. In vitro binding studies showed that synthetic oligonucleotides spanning a pentanucleotide sequence, designated "oligo 2", interacts with nuclear proteins from non-glial cells in a cell-specific manner. Furthermore, the sequence preferentially repressed the heterologous thymidine kinase promoter activity in non-glial cells. We also tested whether JC virus transcription is controlled by DNA methylation. Transient transfection of in vitro methylated JC virus promoter abolished transcription in both the glial and non-glial cells. The repression fold was much larger in glial cells than in non-glial cells. Taken together, this finding suggests that glial cell-specific expression of the JC virus is controlled by DNA methylation as well as cell-specific silencers.

Activity Change of Ornithine Decarboxylase(ODC) after Hepatectomy

  • Chang Sung;Jou, Kab-Yeo;Ha, Duk-Mo
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.415-419
    • /
    • 1995
  • Ornithine decarboxylase(ODC) catalyzes the first and key step in the polyamine biosynthetic pathway. Ornithine decarboxylase is known to the enzyme that increase substantially its activity in regenerating liver. We found that activity and mRNA level for ODC increase significantly after partial hepatectomy in the rat. After laparotomy, there was significant decrease in activity ; however, mRNA content was unaltered in contrast to previous reports of no change in ornithine decarboxylase and thymidine kinase after sham hepatectomy. This may be mediated by the decrease in food intake after hepatectomy. Therefore it is necessary to examine the effect of food intake after hepatectomy on the ODC activity and mRNA level in the future.

  • PDF

Genotoxicity Study of sophoricoside derivatives in mammalian cells system

  • Yun, Hye-Jung;Kim, Youn-Jung;Kim, Eun-Young;Kim, Young-Soo;Kim, Mi-Kyung;Lee, Seung-Ho;Jung, Sang-Hun;Ryu, Jae-Chun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.178.2-178.2
    • /
    • 2003
  • To develope the novel anti-allergic drug, many sophoricoside derivatives were synthesized. Among these derivatives, JSH-II-3, JSH-Ⅵ-3, JSH-Ⅶ-3, and JSH-Ⅷ-3 were selected and subjected to high throughput toxicity screening (HTTS) because they revealed strong IL-5 inhibitory activity and limitation of Quantity. Mouse lymphoma thymidine kinase ($tk^{+/-}$) gene assay(MOLY) and single cell gel electrophoresis (Comet) assay in mammalian cells were used as HTTS tool in our laboratory. (omitted)

  • PDF

Recent Advanced Toxicological Methods for Environmental Hazardous Chemicals (환경 오염물질의 진보된 독성 평가 기법)

  • 류재천;최윤정;김연정;김형태;방형애;송윤선
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.1-12
    • /
    • 1999
  • Recently, several new methods for the detection of genetic damages in vitro and in vivo based on molecular biological techniques were introduced according to the rapid progress in toxicology combined with cellular and molecular biology. Among these methods, mouse lymphoma thymidine kanase (tk) gene forward mutation assay, single cell gel electrophoresis (comet assay) and transgenic animal and cell line model as a target gene of lac I (Big Blue) and lac Z (Muta Mouse) gene mutation are newly introduced based on molecular toxicological approaches. The mouse lymphoma tk$\^$+/-/ gene assay (MOLY) using L5178Y tk$\^$+/-/ mouse lymphoma cell line is one of the mammalian forward mutation assays, and has many advantages and more sensitive than hprt assay. The target gene of MOLY is a heterozygous tk$\^$+/-/ gene located in 11 chromosome, so it is able to detect the wide range of genetic changes like point mutation, deletion, rearrangement, and mitotic recombination within tk gene or deletion of entire chromosome 11. The comet assay is a rapid, simple, visual and sensitive technique for measuring and analysing DNA breakages in mammalian cells, Also, transgenic animal and cell line models, which have exogenous DNA incorporated into their genome, carry recoverable shuttle vector containing reporter genes to assess endogenous effects or alteration in specific genes related to disease process, are powerful tools to study the mechanism of mutation in vivo and in vitro, respectively. Also in vivo acridine orange supravital staining micronucleus assay by using mouse peripheral reticulocytes was introduced as an alternative of bone marrow micronucleus assay. In this respect, there was an International workshop on genotoxicity procedure (IWGTP) supported by OECD and EMS (Environmental Mutagen Society) at Washington D. C. in March 25-26, 1999. The objective of IWGTP is to harmonize the testing procedures internationally, and to extend to finalization of OECD guideline, and to the agreement of new guidelines under the International Conference of Harmonization (ICH) for these methods mentioned above. Therefore, we introduce and review the principle, detailed procedure, and application of MOLY, comet assay, transgenic mutagenesis assay and supravital staining micronucleus assay.

  • PDF

THE EFFECT OF SODIUM FLUORIDE ON THE PHYSIOLOGICAL ROLE OF OSTEOBLASTIC CELL (불화나트륨이 조골세포의 생리적 활성에 미치는 영향)

  • Kim, Dae-Eop
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.3
    • /
    • pp.635-648
    • /
    • 1998
  • The clinical use of fluoride with a well known osteogenic action in osteoporotic patients is rational, because this condition is characterized by impaired bone formation. However, its anabolic effect has not been demonstrated well in vitro. The purpose of this study was to investigate the effects of sodium fluoride on the physiological role of osteoblastic cell. Osteoblastic cells were isolated from fetal rat calvaria. The results were as follows : 1. Mineralized nodules were shown in osteoblastic cell cultures, which had been maintained in the presence of ascorbic acid and ${\beta}-glycerophosphate$ up to 21 days. When cultures were treated with pulses of 48 hr duration before apparent mineralization was occurring, 2-fold increased in their number was detected. 2. Alkaline phosphatase activity of osteoblastic cells was inhibited by sodium fluoride in dose dependent manner. 3. The effect of sodium fluoride on the osteoblastic cell proliferation was measured by the incorporation of $[^3H]$-thymidine into DNA. As a result, sodium fluoride at $1{\sim}100{\mu}M$ increased the $[^3H]$-thymidine incorporation into DNA in a dose dependent manner. 4. The signaling mechanism activated by sodium fluoride dose-dependently enhanced the tyrosine phosphorylation of the adaptor molecule $Shc^{p66}$ and their association with Grb2, one of earlier events in a MAP kinase activation pathway cascade used by a significant subset of G protein-coupled receptors. 5. The phosphorylation of CREB(cAMP response element binding protein)was inhibited by the sodium fluoride in MC3T3E1 cells. In conclusion, the results of this study suggested that the mitogenic effect of the sodium fluoride in MC3T3E1 cell was stimulated in a dose-dependent manner and suggested "an important role for the interaction between She and Grb2" in controlling the proliferation of osteoblasts.

  • PDF

Herpes Simplex Virus Thymidine Kinase Gene Therapy Delivered by Retroviral or Adenoviral Vector in Mouse Model of Lewis Lung Carcinoma (Lewis 폐암 마우스 모델에서 Retroviral Vector나 Adenoviral Vector로 이입된 Herpes Simplex Virus Thymidine Kinase 유전자치료)

  • Kwon, Hee-Chung;Jeong, Jae-Min;Kim, Jung-Hyeon;Ham, Yong-Ho;Seo, Ji-Sook;Lee, Ki-Ho;Kim, Chang-Min;Lee, Han-Soo;Lee, Choon-Taek
    • Tuberculosis and Respiratory Diseases
    • /
    • v.49 no.3
    • /
    • pp.298-309
    • /
    • 2000
  • Background : The antitumor effects of herpes simplex virus thymidine kinase (HSV-tk) and ganciclovir (GCV) strategies for cancer gene therapy have a the following advantages : 1) a direct cytotoxicity to HSV-tk modified cancer cells by GCV 2) a cell death by the local transfer of toxic metabolites from the HSV-tk modified cells to nearby unmodified tumor cells (bystander effect), and 3) in vivo bystander effect such as antitumor-immunity. Retroviral and adenoviral sequences can silence transgene expression in cells and mice. In this study, we investigated the above described advantages of HSV-tk/GCV strategy in Lewis lung cell and mouse lung cancer model using retroviral vector and adenoviral vector. Also, we observed whether the expression of a silenced gene can be reactivated by treating cells with butyrate. Methods : Retrovirus-HSV-tk and adenovirus-HSV-tk vectors were used for the transduction of Lewis lung carcinoma (LLC) cells. The change of HSV-tk expression by butyrate was measured by Western blol The antitumor activities containing bystander effect were observed in vivo (by MTT assay) and in vivo tumor models of various combinations of LLC and LLC-tk. Results : 1. Butyrate induced the enhancement of HSV-tk expression from adenovirally transduced cells but not from retrovirally transduced cells. 2. Both retrovirus-HSV-tk and adenovirus-HSV-tk vectors with GCV treatment were effective for killing of tumor cell in vitro and suppression of LLC tumorigenicity. Bystander effect was responsible for killing of mixture of LLC-tk and LLC in vitro and in vivo-tumorigenicity model. Conclusion : Butyrate could augment adenovirus-mediated HSV -tk gene expression. Cancer gene therapy with HSV-tk suicide gene by retroviral and adenoviral vector seems to be an effective approach for lung cancer therapy.

  • PDF

Imaging of Herpes Simplex Virus Type 1 Thymidine Kinase Gene Expression with Radiolabeled 5-(2-iodovinyl)-2'-deoxyuridine (IVDU) in liver by Hydrodynamic-based Procedure (Hydrodynamic-based Procedure를 이용한 간에서의 HSV1-tk 발현 확인을 위한 방사표지 5-(2-iodovinyl)-2'-deoxyuridine (IVDU)의 영상연구)

  • Song, In-Ho;Lee, Tae-Sup;Kang, Joo-Hyun;Lee, Yong-Jin;Kim, Kwang-Il;An, Gwang-Il;Chung, Wee-Sup;Cheon, Gi-Jeong;Choi, Chang-Woon;Lim, Sang-Moo
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.5
    • /
    • pp.468-477
    • /
    • 2009
  • Purpose: Hydrodynamic-based procedure is a simple and effective gene delivery method to lead a high gene expression in liver tissue. Non-invasive imaging reporter gene system has been used widely with herpes simplex virus type 1 thymidine kinase (HSV1-tk) and its various substrates. In the present study, we investigated to image the expression of HSV1-tk gene with 5-(2-iodovinyD-2'-deoxyuridine (IVDU) in mouse liver by the hydrodynamicbased procedure. Materials and Methods: HSV1-tk or enhanced green fluorescence protein (EGFP) encoded plasmid DNA was transferred into the mouse liver by hydrodynaminc injection. At 24 h post-injection, RT-PCR, biodistribution, fluorescence imaging, nuclear imaging and digital wholebody autoradiography (DWBA) were performed to confirm transferred gene expression. Results: In RT-PCR assay using mRNA from the mouse liver, specific bands of HSV1-tk and EGFP gene were observed in HSV1-tk and EGFP expressing plasmid injected mouse, respectively. Higher uptake of radiolabeled IVDU was exhibited in liver of HSV1-tk gene transferred mouse by biodistribution study. In fluorescence imaging, the liver showed specific fluorescence signal in EGFP gene transferred mouse. Gamma-camera image and DWBA results showed that radiolabeled IVDU was accumulated in the liver of HSV1-tk gene transferred mouse. Conclusion: In this study, hydrodynamic-based procedure was effective in liver-specific gene delivery and it could be quantified with molecular imaging methods. Therefore, co-expression of HSV1-tk reporter gene and target gene by hydrodynamic-based procedure is expected to be a useful method for the evaluation of the target gene expression level with radiolabeled IVDU.