Tumor targeted gene therapy

종양 표적 유전자 치료

  • Kang, Joo-Hyun (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Science)
  • 강주현 (원자력의학원 핵의학연구실)
  • Published : 2006.10.31

Abstract

Knowledge of molecular mechanisms governing malignant transformation brings new opportunities for therapeutic intervention against cancer using novel approaches. One of them is gene therapy based on the transfer of genetic material to an organism with the aim of correcting a disease. The application of gene therapy to the cancer treatment has led to the development of new experimental approaches such as suicidal gene therapy, inhibition of oncogenes and restoration of tumor-suppressor genes. Suicidal gene therapy is based on the expression in tumor cells of a gene encoding an enzyme that converts a prodrug into a toxic product. Representative suicidal genes are Herpes simplex virus type 1 thymidine kinase (HSV1-tk) and cytosine deaminase (CD). Especially, physicians and scientists of nuclear medicine field take an interest In suicidal gene therapy because they can monitor the location and magnitude, and duration of expression of HSV1-tk and CD by PET scanner.

Keywords

References

  1. Blaese RM, Culver KW, Miller AD, Carter CS, Fleisher T, Clerici M, et al. T lymphocyte-directed gene therapy for ADA- SCID: Initial trial results after 4 years. Science 1995;270: 475-480 https://doi.org/10.1126/science.270.5235.475
  2. Huber BE, Richards CA, Krenitsky TA. Retroviral-mediated gene therapy for the treatment of hepatocellular carcinoma: an innovative approach for cancer therapy Proc Natl Acad Sci USA 1991;88: 8039-43
  3. Greco O, Dachs GU. Gene directed enzyme/prodrug therapy of cancer: historical appraisal and future prospectives. J Cell Physiol 2001; 187:22-36 https://doi.org/10.1002/1097-4652(2001)9999:9999<::AID-JCP1060>3.0.CO;2-H
  4. Patterson AV, Saunders MP, Greco O. Prodrugs in genetic chemoradiotherapy. Curr Pharm Des 2003;9:2131-54 https://doi.org/10.2174/1381612033454117
  5. Penuelas I, Mazzolini G, Boan JF, Sangro B, Marti-Climent J, Ruiz M, et al. Positron emission tomography imaging of adenoviral-mediated transgene expression in liver cancer patients. Gastroenterology 2005;128:1787-95 https://doi.org/10.1053/j.gastro.2005.03.024
  6. Wang Y, Iyer M, Annala AJ, Chappell S, Mauro V, Gambhir SS. Noninvasive monitoring of target gene expression by imaging reporter gene expression in living animals using improved bicistronic vectors. J Nucl Med 2005;46:667-74
  7. Yaghoubi SS, Barrio JR, Namavari M, Satyamurthy N, Phelps ME, Herschman HR, et al. Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 2005;12:329-39 https://doi.org/10.1038/sj.cgt.7700795
  8. Pantuck AJ, Matherly J, Zisman A, Nguyen D, Berger F, Gambhir SS, et al. Optimizing prostate cancer suicide gene therapy using herpes simplex virus thymidine kinase active site variants. Hum Gene Ther 2002;13:777-89 https://doi.org/10.1089/10430340252898966
  9. Colombo BM, Benedetti S, Ottolenghi S, Mora M, Pollo B, Poli G, et al. The 'bystander effect': association of U-87 cell death with ganciclovir-mediated apoptosis of nearby cells and lack of effect in athymic mice. Hum Gene Ther 1995;6:763-72 https://doi.org/10.1089/hum.1995.6.6-763
  10. Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001 ;358:727-9 https://doi.org/10.1016/S0140-6736(01)05904-9
  11. Li Z, Shanmugam N, Katayose D, Huber B, Srivastava S, Cowan K, et aI. Enzyme/prodrug gene therapy approach for breast cancer using a recombinant adenovirus expressing Escherichia coli cytosine deaminase. Cancer Gene Ther 1997;4:113-7
  12. Beltinger C, Fulda S, Kammertoens T, Meyer E, Uckert W, Debatin KM. Herpes simplex virus thymidine kinase/ganciclovir-induced apoptosis involves ligand-independent death receptor aggregation and activation of caspases. Proc Natl Acad Sci USA 1999;96: 8699 - 8704 https://doi.org/10.1073/pnas.96.15.8699
  13. Culver KW, Ram Z, Wallvridge S, Ishii H, Oldfield EH, Blaese RM. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992;256:1550-2 https://doi.org/10.1126/science.1317968
  14. Trask TW, Trask RP, Aguilar-Cordova E, Shine HD, Wyde PR, Goodman JC, et al. Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Mol Ther 2000;1:195-203 https://doi.org/10.1006/mthe.2000.0030
  15. Singh S, Cunningham C, Buchanan A, Jolly DJ, Nemunaitis J. Toxicity assessment of intratumoral injection of the herpes simplex type I thymidine kinase gene delivered by retrovirus in patients with refractory cancer. Mol Ther 2001;4:157-60 https://doi.org/10.1006/mthe.2001.0430
  16. Miles BJ, Shalev M, Aguilar-Cordova E, Timme TL, Lee HM, Yang G, et al. Prostate-specific antigen response and systemic T cell activation after in situ gene therapy in prostate cancer patients failing radiotherapy. Hum Gene Ther 2001;12:1955-67 https://doi.org/10.1089/104303401753204535
  17. Alvarez RD, Gomez-Navarro J, Wang M, Barnes MN, Strong TV, Arani RB, et al. Adenoviral-mediated suicide gene therapy for ovarian cancer. Mol Ther 2000;2:524-30 https://doi.org/10.1006/mthe.2000.0194
  18. Hasenburg A, Tong XW, Rojas-Martinez A, Nyberg-Hoffman C, Kieback CC, Kaplan A, et al. Thymidine kinase gene therapy with concomitant topotecan chemotherapy for recurrent ovarian cancer. Cancer Gene Ther 2000;7:839-44 https://doi.org/10.1038/sj.cgt.7700192
  19. Kuriyama S, Mitoro A, Yamazaki M, Tsujinoue H, Nakatani T, Akahane T, et al. Comparison of gene therapy with the herpes simplex virus thymidine kinase gene and the bacterial cytosine deaminase gene for the treatment of hepatocellular carcinoma. Scand J Gastroenterol 1999;34:1033-41 https://doi.org/10.1080/003655299750025156
  20. Trinh QT, Austin EA, Murray DM, Knick VC, Huber BE. Enzyme/prodrug gene therapy: comparison of cytosine deaminase/ 5-fluorocytosine versus thymidine kinase/ganciclovir enzyme/ prodrug systems in a human colorectal carcinoma cell line. Cancer Res 1995;55:4808-12
  21. Stackhouse MA, Pederson LC, Grizzle WE, Curiel DT, Gebert J, Haack K, et al. Fractionated radiation therapy in combination with adenoviral delivery of the cytosine deaminase gene and 5-fluorocytosine enhances cytotoxic and antitumor effects in human colorectal and cholangiocarcinoma models. Gene Ther 2000;7:1019-26 https://doi.org/10.1038/sj.gt.3301196
  22. Crystal RG, Hirschowitz E, Lieberman M, Daly J, Kazam E, Henschke C, et al. Phase I study of direct administration of a replication deficient adenovirus vector containing the E. coli cytosine deaminase gene to metastatic colon carcinoma of the liver in association with the oral administration of the pro-drug 5-fluorocytosine. Hum Gene Ther 1997;8:985-1001 https://doi.org/10.1089/hum.1997.8.8-985
  23. Freytag SO, Khil M, Stricker H, Peabody J, Menon M, DePeralta-Venturina M, et al. Phase I study of replication-competent adenovirus-mediated double suicide gene therapy for the treatment of locally recurrent prostate cancer. Cancer Res 2002;62:4968-76
  24. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, et al. Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 2000;97:12846-51 https://doi.org/10.1073/pnas.97.23.12846
  25. Cunningham C, Nemunaitis J. A phase I trial of genetically modified Salmonella typhimurium expressing cytosine deaminase (TAPET-CD, VNP20029) administered by intratumoral injection in combination with 5-fluorocytosine for patients with advanced or metastatic cancer. Protocol no: CL-017. Version: April 9, 2001. Hum Gene Ther 2001;12:1594-6
  26. Nemunaitis J, Cunningham C, Senzer N, Kuhn J, Cramm J, Litz C, et al. Pilot trial of genetically modified, attenuated Sahnonella expressing the E. coli cytosine deaminase gene in refractory cancer patients. Cancer Gene Ther 2003;10:737-44 https://doi.org/10.1038/sj.cgt.7700634
  27. Haberkorn U, Oberdorfer F, Gebert J, Morr I, Haack K, Weber K, et al. Monitoring gene therapy with cytosine deaminase: in vitro studies using tritiated-5-fluorocytosine. J Nucl Med 1996;37:87-94
  28. Pang S, Dannull J, Kaboo R, Xie Y, Tso CL, Michel K, et al. Identification of a positive regulatory element responsible for tissue-specific expression of prostate-specific antigen. Cancer Res 1997;57 :495-9
  29. Adams JY, Johnson M, Sato M, Berger F, Gambhir SS, Carey M, et al. Visualization of advanced human prostate cancer lesions in living mice by a targeted gene transfer vector and optical imaging. Nat Med 2002;8:891-7 https://doi.org/10.1038/nm743
  30. Wu L, Johnson M, Sato M. Transcriptionally targeted gene therapy to detect and treat cancer. Trends Mol Med 2003;9:421-9 https://doi.org/10.1016/j.molmed.2003.08.005
  31. Yang H, Berger F, Tran C, Gambhir SS, Sawyers CL. MicroPET imaging of prostate cancer in LNCAP-SR39TK-GFP mouse xenografts. Prostate 2003;55:39- 47 https://doi.org/10.1002/pros.10208
  32. Dmitriev I, Kashentseva E, Rogers BE, Krasnykh V, Curiel DT. Ectodomain of coxsackievirus and adenovirus receptor genetically fused to epidermal growth factor mediates adenovirus targeting to epidermal growth factor receptor-positive cells. J Virol 2000;74:6875-84 https://doi.org/10.1128/JVI.74.15.6875-6884.2000
  33. Bischoff JR, Kirn DH, Williams A, Heise C, Horn S, Muna M, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996;274:373-6 https://doi.org/10.1126/science.274.5286.373
  34. Lee CT, Lee YJ, Kwon SY, Lee J, Kim KI, Park KH, et al. In vivo imaging of adenovirns transduction and enhanced therapeutic efficacy of combination therapy with conditionally replicating adenovirus and adenovirus-p27. Cancer Res 2006;66:372-7 https://doi.org/10.1158/0008-5472.CAN-05-1515