• 제목/요약/키워드: Thrust Performance

검색결과 910건 처리시간 0.024초

항공기 이륙추력 감소법 적용 (Application of Aircraft Reduced Takeoff Thrust Method)

  • 노건수
    • 한국항공운항학회지
    • /
    • 제15권3호
    • /
    • pp.70-76
    • /
    • 2007
  • The benefits for using reduced takeoff thrust are many, ranging from lower maintenance and operating costs to improved engine and dispatch reliabilities. Some pilots, however, are apprehensive about using reduced thrust. They are particularly reluctant to use the maximum permissible level of reduced thrust. Two common arguments are (1)If reduced thrust is used, then the airplane will not be able to clear the obstacles if an engine fails during takeoff, and (2)If the maximum allowable assumed temperature is used, then there will be no stopping margin left if the takeoff is aborted. There is the notion that using reduced thrust sacrifices safety. The intent of this discussion is to: (1)Show that reduced thrust performance meets all regulatory requirements (2)Show that the Assumed Temperature method includes inherent extra performance margins (3)Show how to maximize performance margins while maximizing thrust reduction.

  • PDF

축대칭 환형 이젝터 제트의 내부 유동과 추력특성 (INTERNAL FLOW PROPERTIES AND THRUST CHARACTERISTICS OF AXI-SYMMETRIC ANNULAR BELL TYPE EJECTOR-JET)

  • 박근홍;권세진
    • 한국전산유체공학회지
    • /
    • 제12권2호
    • /
    • pp.46-52
    • /
    • 2007
  • An experimental and numerical investigation of the ejector-jets focusing on its geometric parameters that effect on thrust performance was carried out. The area ratio of the primary nozzle that was tested in the present study was 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet had values of 3.41, 6.82, and 10.23. Internal flow properties of ejector-jet were estimated by comparison experiment data and CFD analysis for basic study of ejector-jet thrust performance. For examination of thrust performance, the thrust ratios increased with increase in L/D. Especially at AR=2.17, the maximum thrust augmentation was 33 percent for the shortest L/D. It is expected that the increase of mixing duct length of ejector-jet will be helpful in a thrust performance by improving mixing efficiency.

축대칭 환형 이젝터 제트의 내부 유동과 추력특성 (INTERNAL FLOW PROPERTIES AND THRUST CHARACTERISTICS OF AXI-SYMMETRIC ANNULAR BELL TYPE EJECTOR-JET)

  • 박근홍;권세진
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 춘계 학술대회논문집
    • /
    • pp.166-170
    • /
    • 2007
  • An experimental and numerical investigation of the ejector-jets focusing on its geometric parameters that effect on thrust performance was carried out. The area ratio of the primary nozzle that was tested in the present studywas 2.17 and 3.18, while the ratio of the length to the diameter of the duct downstream the primary nozzle inlet had values of 3.41, 6.82, and 10.23. Internal flow properties of ejector-jet were estimated by comparison experiment data and CFD analysis for basic study of ejector-jet thrust performance. For examination of thrust performance, the thrust ratios increased with increase in L/D. Especially at AR=2.17, the maximum thrust augmentation was 34 percent for the shortest L/D. It is expected that the increase of mixing duct length of ejector-jet will be helpful in a thrust performance by improving mixing efficiency.

  • PDF

Hydrodynamic Design of Thrust Ring Pump for Large Hydro Turbine Generator Units

  • Lai, Xide;Zhang, Xiang;Chen, Xiaoming;Yang, Shifu
    • International Journal of Fluid Machinery and Systems
    • /
    • 제8권1호
    • /
    • pp.46-54
    • /
    • 2015
  • Thrust-ring-pump is a kind of extreme-low specific speed centrifugal pump with special structure as numerous restrictions from thrust bearing and operation conditions of hydro-generator units. Because the oil circulatory and cooling system with thrust-ring-pump has a lot of advantages in maintenance and compactness in structure, it has widely been used in large and medium-sized hydro-generator units. Since the diameter and the speed of the thrust ring is limited by the generator set, the matching relationship between the flow passage inside the thrust ring (equivalent to impeller) and oil bath (equivalent to volute) has great influence on hydrodynamic performance of thrust-ring-pump. On another hand, the head and flow rate are varying with the operation conditions of hydro-generator units and the oil circulatory and cooling system. As so far, the empirical calculation method is employed during the actual engineering design, in order to guarantee the operating performance of the oil circulatory and cooling system with thrust-ring-pump at different conditions, a collaborative hydrodynamic design and optimization is purposed in this paper. Firstly, the head and flow rate at different conditions are decided by 1D flow numerical simulation of the oil circulatory and cooling system. Secondly, the flow passages of thrust-ring-pump are empirically designed under the restrictions of diameter and the speed of the thrust ring according to the head and flow rate from the simulation. Thirdly, the flow passage geometry matching optimization between thrust ring and oil bath is implemented by means of 3D flow simulation and performance prediction. Then, the pumps and the oil circulatory and cooling system are collaborative hydrodynamic optimized with predicted head-flow rate curve and the efficiency-flow rate curve of thrust-ring-pump. The presented methodology has been adopted by DFEM in design process of thrust-ring-pump and it shown can effectively improve the performance of whole system.

고체 로켓모터의 TCO 성능 설계 (Performance Design of TCO System of the Solid Rocket Motor)

  • 황용석;윤명원;오종윤;배주찬
    • 한국항공우주학회지
    • /
    • 제34권5호
    • /
    • pp.101-106
    • /
    • 2006
  • 본 논문은 TCO(thrust cut-off) 시스템을 장착한 로켓 모터의 성능설계에 관한 연구로서, TCO 포트 크기에 따라 변화하는 로켓의 성능을 평가하였다. 시험용 로켓 모터를 제작하여 연소시험을 행하였고, TCO 포트 크기에 따른 추력변화의 경향을 분석하여 최대 역방향 추력점이 존재함을 밝혀내었으며 보존방정식을 이용하여 TCO 성능설계 및 시험분석을 행하였다. 이와 같은 성능설계 기법은 향후 유사한 TCO 시스템의 설계에 유용하게 적용될 수 있다.

고체 로켓모터의 TCO 성능 설계 (Performance Design of TCO System of the Solid Rocket Motor)

  • 황용석;윤명원;오종윤;배주찬
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2006년도 제26회 춘계학술대회논문집
    • /
    • pp.53-56
    • /
    • 2006
  • 본 논문은 TCO(thrust cut-off) 시스템을 장착한 로켓 모터의 성능설계에 관한 연구로서, TCO 포트 크기에 따라 변화하는 로켓의 성능을 평가하였다. 시험용 로켓 모터를 제작하여 연소시험을 행하였고, TCO 포트 크기에 따른 추력변화의 경향을 분석하여 최대 역방향 추력점이 존재함을 밝혀내었으며 보존방정식을 이용하여 TCO 성능설계 및 시험분석을 행하였다. 이와 같은 성능설계 기법은 향후 유사한 TCO 시스템의 설계에 유용하게 적용될 수 있다.

  • PDF

AUV의 추진성능 추정 기법 연구 (An Estimation Technique for the Thrust Performance of AUVs)

  • 이종무;최현택;문일성;이판묵
    • 한국해양공학회지
    • /
    • 제23권4호
    • /
    • pp.47-51
    • /
    • 2009
  • Thrust is one of the important performance characteristics of an AUV. At the design stage, the resistance of an AUV at its maximum speed is estimated and then the thrust system is designed, including the propeller diameter, propeller rpm, driving system, and required power. However, it is not possible to be certain that the thrust system has been correctly designed until the AUV is launched and its speed is measured. If data from a propeller open-water test is available, the thrust and torque of the propeller at a certain speed can be estimated. In addition, if the motor's torque characteristics are available, the maximum speed saturated by the induced propeller torque can be estimated. In this paper, an easy technique for estimating the maximum speed of an AUV will be shown, even in a case where additional resistance is gained from appendages not considered at the design stage. Furthermore, the thrust performance changes by adjusting the diameter of the propeller can be easily investigated.

정렬불량에 따른 틸팅 패드 스러스트 베어링의 운전 성능 한계 검토 (Operating Performance Limitations of Tilting Pad Thrust Bearings Due to Misalignment)

  • 송애희;최성필;김선진
    • Tribology and Lubricants
    • /
    • 제36권2호
    • /
    • pp.82-87
    • /
    • 2020
  • In thrust bearings, the thrust collar and bearing surface need to be parallel to each other to ensure that all pads share the same load. In rotating machines, the shaft system cannot achieve perfect alignment. Misalignment of the thrust collar results in some pads supporting a higher load than others and excessive loads being placed on some pads. Consequently, high loads and high temperatures may occur in the bearing. Thus, in this study, we aim to analytically evaluate the performance of a misaligned non-equalizing direct lubricated tilting pad thrust bearing. We define the oil film thickness of the misaligned thrust bearing using the Byrant angle. Additionally, we calculate the pressure distribution and temperature distribution of the thrust bearing using the generalized Reynolds equation and energy equation. The design limit of the thrust bearing is defined by the load and temperature. Therefore, we evaluate the allowable misalignment angle as the limit of the maximum load and temperature. The analysis results demonstrate that an increase in the speed and load corresponds to a smaller allowable misalignment angle. However, as this is not the same for all thrust bearings, evaluating the allowable misalignment angle at each thrust bearing is essential.

하이브리드 로켓의 추력제어 성능 향상에 관한 연구 (Study of Thrust Control Performance Improvement for Hybrid Rocket Applications)

  • 최재성;강완규;허환일
    • 한국추진공학회지
    • /
    • 제15권1호
    • /
    • pp.55-62
    • /
    • 2011
  • 본 연구에서는 하이브리드 로켓의 추력 제어 연소실험을 통하여 추력 제어 성능 향상을 위한 연구를 진행하였다. 추력 제어 명령에 따라 니들밸브와 결합된 스텝모터의 구동을 제어함으로써 산화제 유량을 조절하는 시스템을 구축하였다. 하이브리드 로켓 연소실험에서 사용된 산화제로는 기체산소($GO_2$)를 사용하였으며 추진제는 PE(Polyethylene)와 PC(Polycarbonate)를 사용하였다. 추력 제어 연소실험 초기에 발생되었던 추력섭동(Thrust Oscillation) 현상의 개선과 낮은 응답속도의 향상을 위해 연소실험 과정에서 산화제 배관의 유속 변화를 측정하고 원인을 분석하였다. 이를 보완한 연소 실험을 통하여 추력명령의 ${\pm}1$ N 이내에서 추력이 안정적으로 제어되었다.

공작기계용 철심형 리피어모터 기술 개발 (Development of Iron Core Type Linear Motor for Machine Tool)

  • 정재한;박재완;이상룡
    • 한국정밀공학회지
    • /
    • 제19권9호
    • /
    • pp.82-89
    • /
    • 2002
  • There is an intensifying demand fur linear motors in vast range of industry applications such as in factory automation and semi-conductor manufacturing equipment due to their high positioning accuracy, high static stiffness, high thrust and excellent dynamic characteristics. This paper presents an iron core type linear motor for machine tool whose rated thrust is up to 6000N. For electromagnetic field and dynamic analysis, finite element method (FEM) is implemented to predict motor performance. Various design parameters are considered to reduce thrust ripple and to improve dynamic performance with the least sacrifice of effective thrust. Experimental results on thrust and static stiffness are also followed to confirmed the validity of the analysis.