• 제목/요약/키워드: Thrust Bearing

검색결과 219건 처리시간 0.027초

고속 회전 유연 디스크의 진동 저감용 공기 베어링 해석 (Numerical Simulations for Suppressing Transverse Vibration of a very Flexible Rotating Disk using Air Bearing Concept)

  • 이성호;임윤철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.175-185
    • /
    • 2004
  • Rotating disks are used in various machines such as data storage device, gyroscope, circular saw, etc. Transverse vibration of a rotating disk is very important for the performance of these machines. This work proposes a method to suppress transverse vibration of a very flexible rotating disk in non-contacting manner. A system considered in this study is a very flexible rotating disk with a thrust bearing pad which is located underneath the rotating disk. The pressure force generated in the gap between the rotating disk and the thrust pad pushes the rotating disk in the direction of axis of rotation while the centrifugal force and the elastic recovery force push the rotating disk in reverse direction. The balance between these forces suppresses the transverse vibration of the rotating disk. A coupled disk-fluid system is analyzed numerically. The finite element method is used to compute the pressure distribution between the thrust pad and the rotating disk while the finite difference method is used to compute the transverse vibration of a rotating disk. Results show that the transverse vibration of the rotating disk can be suppressed effectively for certain combination of air bearing and operating parameters.

  • PDF

배압실의 설계를 통한 상호회전 스크롤 압축기의 전복 모멘트 최소화 (Minimization of Tilting Moment of Co-Rotating Scroll Compressor by Design of Back Pressure Chamber)

  • 구인회;박진무
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1305-1313
    • /
    • 2000
  • In a co-rotating scroll compressor, both scrolls rotate on their fixed axes contrary to the conventional orbiting type scroll machine. This implies fixed locations and directions of the gas pressure force and sealing force. Because the tilting moment is mainly caused by interplay between the resultant force of above forces and bearing reaction force, the variation during one cycle is relatively small. Under real operation, this moment is balanced by the restoring moment created by the reaction between the baseplate and thrust bearing or between the scroll tip and baseplate. If these reactions become too large, greater torque is required due to increased friction in addition to the wear of mating parts. Consequently, appropriate study and minimization of tilting moment is important in the design of scroll machines. In this study, taking into account of the small variation of tilting moment during one cycle, we minimize the moment and thrust bearing reaction force by a properly designed back pressure chamber. As a result, for both the driving and driven scrolls, the tilting moment and the reaction force of thrust bearing can be minimized. And the stability is improved for all cases.

여러가지 형식의 동압 공기 윤활 스러스트 베어링의 성능에 대한 연구 (A Study on the Performances of Hydrodynamic Air Lubricated Thrust Bearings of Several Types)

  • 강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제18권5호
    • /
    • pp.364-370
    • /
    • 2002
  • In this paper, numerical analyses were undertaken to calculate the static and dynamic performances of step-pocket, inward pumping spiral grooved, outward pumping spiral grooved and herringbone grooved bearings. For each bearing, optimal values for various design parameters were obtained to maximize the load capacity and the stiffness and bearing performances were calculated. The optimized performances of these bearings were compared to conclude that the performance of step-pocket bearing is better than the other bearings.

고속 주축베어링의 볼 접촉각 변동을 고려한 주축 설계공차 (Design Tolerance of High Speed Spindle considering the Variation of Ball Contact Angle in the Angular Contact Ball Bearings)

  • 이찬홍
    • 한국생산제조학회지
    • /
    • 제19권5호
    • /
    • pp.609-615
    • /
    • 2010
  • Angular contact ball bearings in a high speed spindles are under the extreme conditions, such as high temperature, big centrifugal force and thrust cutting forces. So, the assembly contacts between spindle shaft and inner ring bearings, bearing housing and outer ring of bearings are occasionally unstable at high speed revolution. Furthermore, the ball contact angle of a bearing, which influence stiffness and lifetime of bearings, are changed according to loads and rotational speed. To analyze internal forces of a bearing under high speed revolution, the ball contact are calculated using nonlinear equations in consideration of rotational speed, thrust loads and raceway form. Diameter increase of inner and outer ring by influence factors, such as internal forces to inner and outer ring, centrifugal force and temperature of inner and outer rings are calculated to establish stable state in bearing assembly in high speed spindle. Finally, contribution ratio of influence factor to assembly design tolerance of inner and outer rings are shown and the stable assembly design tolerance are proposed.

An Analysis of Dynamic Behavior of Fluid Dynamic Bearing for Hard Disk Drive Spindle Motor

  • Song, Young-Han;Yoo, Jin-Gyoo;Rhim, Yoon-Chul
    • KSTLE International Journal
    • /
    • 제4권1호
    • /
    • pp.18-26
    • /
    • 2003
  • Recently, fluid dynamic bearings (EDBs) have important applications in miniature rotating machines such as those found in the computer information storage industry, due to their outstanding low acoustic noise and NRRO (Non-Repeatable Run Out) characteristics. This research investigates the dynamic behavior of fluid dynamic bearings composed of hydrodynamic herringbone groove journal and spiral groove thrust bearing. The five degrees of freedom of FDB are considered to describe the real motion of a general rotor bearing system. The Reynolds equation and five nonlinear equations of motion for the dynamic behavior are solved simultaneously, The incompressible Reynolds equation is solved by using the finite element method (FEM) in order to calculate the pressure distribution in a fluid film and the five equations of motion by using the Runge-Kutta method. The reaction forces and moments are obtained by integrating the pressure along the fluid film. Numerical results are validated by comparing with the previously published experimental and numerical results. As a result the dynamic behavior of FDB spindle such as orbit, floating height, and angular orbit is investigated by considering the conical motion under the static and dynamic load conditions.

300마력급 초고속 전동기의 스러스트 자기 베어링/댐퍼 설계 및 특성해석 (Design and Analysis of Thrust Magnetic Bearing/Damper for 300HP Class High Speed Motor)

  • 장석명;최장영;박지훈;이용복;이희섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.5-7
    • /
    • 2007
  • This paper deals with design and analysis of thrust magnetic bearing for 300HP class high speed motor. Using the solutions obtained from equivalent magnetic circuits, we predicts the electromagnetic characteristics such as thrust, time constant and power loss according to design parameters. And then, using non-linear finite element analysis, a detailed design is performed considering saturation in order to meet requirements.

  • PDF

DLP용 유체동압베어링 스핀들모터 (Fluid Dynamic Bearing Spindle Motors for DLP)

  • 김응철;성세진
    • 전기학회논문지P
    • /
    • 제60권2호
    • /
    • pp.82-90
    • /
    • 2011
  • The small precision spindle motors in the high value-added products including the visible home appliances such as DLP projector require not only the energy conversion devices but also high efficiency, low vibration and sound operation. However, the spindle motors using the conventional ball bearing and sintered porous metal bearing have following problems, respectively: the vibration by the irregularity of balls and the short motor life cycle by the ball's abrasion and higher sound noises by dry contact between shaft and sleeve. In this paper, it is proposed that the spindle motor with a fluid dynamic bearing is suitable for the motor to drive the color wheel of the DLP(digital lightening processor) in the visible home appliances. The proposed spindle motor is composed of the fluid dynamic bearing with both the radial force and the thrust force. The fluid dynamic bearing is solved by the finite element analysis of the mechanical field with the Reynolds equations. The magnetic part of spindle motor, which is a type of Brushless DC Motor, is designed by the electro-magnetic field analysis coupled with the Maxwell equation. And the load capacity and the friction loss of fluid dynamic bearing are analyzed to bearing clearance variation by the fabrication error in designed motor. The design of the proposed motor is implemented by the load torque caused by the eccentricity and the unbalance of the fluid dynamic bearing when the motors are fabricated in error. The prototype of the motor with the fluid dynamic bearing is manufactured, and experiment results show the vibration, sound, and phase current at no load and color wheel load of the motors in comparison. The high performance characteristics with the low vibration, the low acoustic noise and the optimal mechanical structure are verified by the experimental results.

회전각가속도가 가스 포일 스러스트 베어링의 마찰 및 마모 특성에 미치는 영향 (Effects of Angular Acceleration on the Friction and Wear Characteristics of Gas Foil Thrust Bearings)

  • 황성호;김대연;김태호
    • Tribology and Lubricants
    • /
    • 제39권5호
    • /
    • pp.203-211
    • /
    • 2023
  • This study experimentally investigates the effects of angular acceleration on the friction and wear performances of a gas foil thrust bearing (GFTB) using a typical GFTB with six pads. The outer radius of the bearing is 31.5 mm, the total bearing area is 2,041 mm2 , and the bump foil and incline (ramp) height are both 500 ㎛. The newly developed GFTB test rig for measuring the friction torque and coefficient measures the axial load, drag torque, lift-off speed, and touch-down speed. The experiment is conducted for angular accelerations of 78.5, 314.2, and 328.3 rad/s2 at axial loads of 5, 10, and 15 N, respectively. The test shows that the start-up friction coefficient increases with increasing axial load at the same angular acceleration, and the friction coefficient decreases with increasing angular acceleration under the same axial load. As the angular acceleration increases, the lift-off speed at the motor start-up increases, and the touch-down speed at the motor stop decreases. The wear distance of the GFTB for a single on/off cycle increases with increasing axial load at the same angular acceleration and decreases nonlinearly with increasing angular acceleration under the same axial load. The test results suggest that adjusting the rotational angular acceleration helps reduce bearing friction and wear.

영구자석형 스러스트 베어링의 최적 설계 (Optimal Design of Permanent Magnet Thrust Bearings)

  • 유승열;김우연;김승종;이욱륜;배용채;노명규
    • 대한기계학회논문집A
    • /
    • 제35권4호
    • /
    • pp.353-358
    • /
    • 2011
  • 본 논문에서는 환형 영구자석을 이용한 스러스트 베어링의 최적설계에 대하여 기술하였다. 영구자석형 스러스트 베어링은 두 조의 환형 영구자석으로 이루어지며, 한 조의 영구자석이 다른 한 조의 영구자석 내부에위치한다. 영구자석간의 축방향 변위 (엇갈림)에 의해 축방향 힘이 발생하고 이를 통해 스러스트 베어링 역할을 하게 된다. 최소한의 영구자석으로 베어링 부하용량을 만족하는 베어링 설계 파라미터를 구하기 위해 본 논문에서는 등가전류판 방법을 이용하여 해석적 설계식을 유도하고, 적절한 제한 조건을 설정하여 최적 설계를 수행하였다. 최적 설계 결과는 3 차원 유한요소해석을 통해 검증하였다. 본 논문에서 고려한 축방향 배열과 Halbach 배열의 스러스트 베어링 중 Halbach 배열이 축방향 배열에 비해 동일한 부피의 영구자석으로 더 큰 부하용량을 얻을 수 있음을 확인하였다. 등가전류판 방법의 유효성을 3 차원 유한요소해석을 통해 검증하였고, 축방향 배열보다Halbach 배열이 등가전류판 방법의 가정에 좀 더 민감하게 영향을 받는 것을 알 수 있었다.