• Title/Summary/Keyword: Throttleable Engine

Search Result 4, Processing Time 0.015 seconds

Study on Spray Angle of a Throttleable Pintle Injector according to Total Momentum Ratio based on Hot Fire Test Conditions (연소시험 조건 기반 총운동량비에 따른 가변추력 핀틀 분사기의 분무각 분석)

  • Heo, Subeom;Kim, Dae Hwan;Lee, Suji;Yoon, Youngbin
    • Journal of ILASS-Korea
    • /
    • v.25 no.3
    • /
    • pp.126-131
    • /
    • 2020
  • Throttleable rocket engines are in high demand due to the diversification of space missions. Pintle injector is known to be suitable for throttleable rocket engines, because of its high efficiency in overall thrust zone. In this study, the relationship between spray angle of a throttleable pintle injector and total momentum ratio based on hot fire test conditions was investigated. As a result, the spray angle in 100% and 60% throttling level is higher than the spray angle obtained by the case which considers only propellant mass flow rate, owing to higher total momentum ratio (TMR). The results of this study may be useful for predicting spray angle in hot fire test.

Technology and Developing Trends of Pintle Injector for Throttleable Engine (가변추력 엔진용 핀틀 분사기 분석 및 개발동향)

  • Lee, Suji;Koo, Jaye;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.107-118
    • /
    • 2017
  • As the interest in lunar exploration increases, a throttleable engine is regarded as a important technology. Variable area injectors have been identified to be the most reliable throttling method. Pintle injector is a representative injector of the variable method. It has a simple design and inherent combustion stability. Therefore, it is necessary to research the pintle injector. The present study investigates the concept of the injector, the design factors, and the latest development trends for pintle injector design.

High Pressure Spray and Combustion Characteristics of Throttleable Pintle Injector (가변추력 핀틀 분사기의 고압 분무 및 연소특성)

  • Kim, Dae Hwan;Heo, Subeom;Kim, Inho;Hwang, Donghyun;Kang, Cheolwoong;Lee, Shinwoo;Ahn, Kyubok;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.2
    • /
    • pp.60-71
    • /
    • 2022
  • The reusable, low-cost launch vehicle development trend in the recent launch vehicle market is being subdivided into several ways, and the throttleable engine is one of them. Plus, several nations have selected methane as a next-generation propellant due to its cleanness. In this research, a throttleable pintle injector using gas methane and liquid oxygen as propellants was developed, followed by its spray and combustion characteristics analysis, including high pressure cold and hot tests. The designed throttleable pintle injector has a double sleeve structure, and its tightness and functionality are confirmed through repetitive atmospheric, high-pressure cold tests, and hot tests. Though some design errors were discovered and a low throttling level was unable to be achieved in the combustion test.

Experimental study on the spray characteristics of a dual-manifold liquid-centered swirl coaxial injector

  • Lee, Ingyu;Yoon, Jungsoo;Park, Gujeong;Yoon, Youngbin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.4
    • /
    • pp.444-453
    • /
    • 2014
  • A throttleable rocket engine enables operational possibilities such as the docking of spacecraft, maneuvering in a certain orbit and landing on a planet's surface, altitude control, and entrance to atmosphere-less planets. Thus, throttling methods have long been researched. However, dual-manifold injectors, which represent one throttling method, have been investigated less than others. In this study, dual-manifold and single-manifold injectors were compared to determine the characteristics of dual-manifold injectors. Also, the effects of gas injection were investigated with various F/O ratios. To investigate the characteristics, mass flow rate, spray pattern, spray angle, and droplet size were measured. The spray angle and droplet size were captured by indirect photography. About 30 images were taken to assess the spray patterns and spray angle. Also, 700 images were analyzed to understand the droplet distribution and targeting area, moving to the right from the centerline with 1.11-cm intervals. The droplet size was obtained from an image processing procedure. From the results, the spray angle showed two transition regions, due to swirl momentum in the swirl chamber regardless of the F/O ratio. The droplet size showed similar trends in both dual-manifold and single-manifold injectors except in the low mass flow rate region. In the case of the dual- manifold injector, the spray cone was not fully developed in the low mass flow rate region due to low angular momentum in the swirl chamber.