DOI QR코드

DOI QR Code

High Pressure Spray and Combustion Characteristics of Throttleable Pintle Injector

가변추력 핀틀 분사기의 고압 분무 및 연소특성

  • Kim, Dae Hwan (Department of Aerospace Engineering, Seoul National University) ;
  • Heo, Subeom (Department of Aerospace Engineering, Seoul National University) ;
  • Kim, Inho (Department of Aerospace Engineering, Seoul National University) ;
  • Hwang, Donghyun (School of Mechanical Engineering, Chungbuk National University) ;
  • Kang, Cheolwoong (School of Mechanical Engineering, Chungbuk National University) ;
  • Lee, Shinwoo (School of Mechanical Engineering, Chungbuk National University) ;
  • Ahn, Kyubok (School of Mechanical Engineering, Chungbuk National University) ;
  • Yoon, Youngbin (Institute of Advanced Aerospace Technology, Seoul National University)
  • Received : 2021.12.02
  • Accepted : 2022.04.15
  • Published : 2022.04.30

Abstract

The reusable, low-cost launch vehicle development trend in the recent launch vehicle market is being subdivided into several ways, and the throttleable engine is one of them. Plus, several nations have selected methane as a next-generation propellant due to its cleanness. In this research, a throttleable pintle injector using gas methane and liquid oxygen as propellants was developed, followed by its spray and combustion characteristics analysis, including high pressure cold and hot tests. The designed throttleable pintle injector has a double sleeve structure, and its tightness and functionality are confirmed through repetitive atmospheric, high-pressure cold tests, and hot tests. Though some design errors were discovered and a low throttling level was unable to be achieved in the combustion test.

최근 발사체 시장의 저비용·재사용 발사체 개발 움직임은 여러 방향으로 세분화되고 있으며, 그중 하나는 가변추력 엔진 개발이다. 또한, 우주 선진국들은 그 청정성 때문에 차세대 우주발사체 추진제로 메탄을 선택하여 연구개발을 진행하고 있다. 본 연구에서는 이에 기체메탄과 액체산소를 추진제로 사용하는 가변추력 핀틀 분사기를 개발했고, 고압 수류시험과 고압 연소시험을 통해 분무 및 연소 특성을 분석했다. 개발된 가변추력 핀틀 분사기는 이중 슬리브 구조를 가졌으며, 반복적인 상압수류, 고압수류 및 연소시험에서 기밀성과 작동성 등에 문제없음을 확인할 수 있었다. 그러나 목표했던 추력 조절 범위는 연소시험에서 달성치 못하는 등 설계상의 문제점이 발견되어 보완이 필요하다.

Keywords

Acknowledgement

본 연구는 서울대학교 미래혁신연구원과 연계된 과학기술정보통신부의 재원으로 한국항공우주연구원 위탁연구(2019M1A3A1A02076963), 스페이스챌린지사업(2021M1A3B8075809), 중견연구자지원사업(NRF-2021R1A2C2003759)의 지원을 받아 수행한 결과입니다. 또한, 본 연구의 제1저자와 제2저자는 각각 서울대학교 기초학문분야 학문후속세대와 특성별 학문후속세대의 일원으로 본부로부터 재정적인 지원을 받았습니다. 아울러, 본 연구의 고압수류시험과 연소시험은 충북대학교 기계공학부 고급추진연소연구실의 시설을 활용해 공동연구로 진행되었음을 밝힙니다. 시설의 활용과 시험 진행에 도움을 아끼지 않은 고급추진연소연구실 연구원 일동에게 깊이 감사드립니다.

References

  1. McDowell, J.C., "The Low Earth Orbit Satellite Population and Impacts of the SpaceX Starlink Constellation," The Astrophysical Journal Letters, Vol. 892, No. 2, L36, 2020. https://doi.org/10.3847/2041-8213/ab8016
  2. Lee, K.O., Lee, J.S., Park, S.Y., Roh, W.R., Im, S.H. and Seo, D.B., "Korean Reusable Launch Vehicle Development Strategy Using SpaceX's Strategy," Journal of the Korean Society of Propulsion Engineers, Vol. 25, No. 3, pp. 101-112, 2021. https://doi.org/10.6108/KSPE.2021.25.3.101
  3. Dressler, G.A. and Bauer, J.M., "TRW Pintle Engine Heritage and Performance Characteristics," 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Las Vegas, N.V., U.S.A., AIAA 2000-3871, July 2000.
  4. Austin, B.L., Heister, S.D. and Anderson, W.E., "Characterization of Pintle Engine Performance for Nontoxic Hypergolic Bipropellants," Journal of Propulsion and Power, Vol. 21, No. 4, pp. 627-635, 2005. https://doi.org/10.2514/1.7988
  5. Son, M., Radhakrishnan, K., Koo, J., Kwon, O.C. and Kim, H.D., "Design Procedure of a Movable Pintle Injector for Liquid Rocket Engines," Journal of Propulsion and Power, Vol. 33, No. 4, pp. 858-869, 2017. https://doi.org/10.2514/1.B36301
  6. Lee, K., Shin, D., Son, M., Moon, H. and Koo, J., "Flow Visualization of Cryogenic Spray from a Movable Pintle Injector," Journal of Visualization, Vol. 22, pp. 773-781, 2019. https://doi.org/10.1007/s12650-019-00548-7
  7. Sakaki, K., Kakudo, H., Nakaya, S., Tsue, M., Kanai, R., Suzuki, K., Inagawa, T. and Hiraiwa, T., "Performance Evaluation of Rocket Engine Combustors using Ethanol/Liquid Oxygen Pintle Injectors," 52nd AIAA/SAE/ASEE Joint Propulsion Conference, Salt Lake City, U.T., U.S.A., AIAA 2016-5080, July 2016.
  8. Lee, S., Kim, D.H., Koo, J. and Yoon, Y., "Spray Characteristics of a Pintle Injector based on Annular Orifice Area," Acta Astronautica, Vol. 167, pp. 201-211, 2020. https://doi.org/10.1016/j.actaastro.2019.11.008
  9. Lee, S., Kim, D.H., Koo, J. and Yoon, Y., Corrigendum to "Spray Characteristics of a Pintle Injector based on Annular Orifice Area," Acta Astronautica, Vol. 173, pp. 473-474, 2020. https://doi.org/10.1016/j.actaastro.2020.04.039
  10. Kim, D.H., Lee, S. and Yoon, Y., "Droplet Size Control in Gas-Liquid Pintle Injectors," Transactions of the Japan Society for Aeronautical and Space Sciences, Vol. 64, No. 2, pp. 91-100, 2021. https://doi.org/10.2322/tjsass.64.91
  11. Heo, S., Kim, D.H., Lee, S. and Yoon, Y., "Study on Spray Angle of a Throttleable Pintle Injector according to Total Momentum Ratio based on Hot Fire Test Conditions," Journal of ILASS-Korea, Vol. 25, No. 3, pp. 126-131, 2020. https://doi.org/10.15435/JILASSKR.2020.25.3.126
  12. Kozlov, A.A., Vorobiev, A.G. and Borovik, I.N., "Small Liquid Rocket Engines(in Russian)," Moscow Aviation Institiute, Moscow, Russia, 2013.
  13. Pnomareko, A., "RPA - Tool for Rocket Propulsion Analysis," Space Propulsion Conference, Cologne, Germany, SP2014-2967435, May 2014.
  14. Bezmenova, N.V. and Shustov, S.A., "Formation of the Thermal and Gas dynamic CAE-Models of Virual Flows of Combustion Products in Chambers and Gas Generators of LRE taking into account on Ideal flow of the working Processes(in Russian)," Publishing House of SSAU, Samar, Russia, 2010.
  15. Spencer, D.R., "Variable Area Injector for Rocket Engine," US3722219A., 27 Mar. 1973.
  16. Matthew J.C., James R.H. and Yang, V., "Liquid-Propellant Rocket Engine Throttling: A Comprehensive Review," Journal of Propulsion and Power, Vol. 26, No. 5, pp. 897-923, 2010. https://doi.org/10.2514/1.49791
  17. Son, M. "Correlations between Spray and Combustion Characteristics of a Movable Pintle Injector for Liquid Rocket Engines," Ph.D. Dissertation, Department of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang-si, Gyeonggi-do, Korea, 2017.
  18. Son, M., Yu, K., Koo, J., Kwon, O.C. and Kim, J.S., "Effects of momentum ratio and weber number on spray half angles of liquid controlled pintle injector," Journal of Thermal Science, Vol. 24, No. 1, pp. 37-43, 2015. https://doi.org/10.1007/s11630-015-0753-7
  19. Kang, D., Hwang, D., Lee, B.Y., Kim, J., Choi, H.S. and Ko, Y., "A study on spray and mixing characteristics of a liquid-liquid pintle injector with the variation of total momentum ratio," 2019 Fall Korean Society of Propulsion Engineers Conference, Busan, Korea, KSPE 2019-2184, 2019.
  20. McBride, B.J. and Gordon, S., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications II. User Manual and Program Description," NASA Reference Publications, Vol. 1311, E-8017-1, 1996.
  21. Kang, C., Hwang, D., Ahn, J., Lee, J., Lee, D. and Ahn, K., "Methane Engine Combustion Test Facility Construction and Preliminary Tests," Journal of the Korean Society of Propulsion Engineers, Vol. 25, No. 3, pp. 89-100, 2021. https://doi.org/10.6108/KSPE.2021.25.3.089