• Title/Summary/Keyword: Thromboxane A2

Search Result 149, Processing Time 0.022 seconds

3D Structure Prediction of Thromboxane A2 Receptor by Homology Modeling

  • Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.8 no.1
    • /
    • pp.75-79
    • /
    • 2015
  • Thromboxane A2 receptors (TXA2-R) are the G protein coupled receptors localized on cell membranes and intracellular structures and play pathophysiological role in various thrombosis/hemostasis, modulation of the immune response, acute myocardial infarction, inflammatory lung disease, hypertension and nephrotic disease. TXA2 receptor antagonists have been evaluated as potential therapeutic agents for asthma, thrombosis and hypertension. The role of TXA2 in wide spectrum of diseases makes this as an important drug target. Hence in the present study, homology modeling of TXA2 receptor was performed using the crystal structure of squid rhodopsin and night blindness causing G90D rhodopsin. 20 models were generated using single and multiple templates based approaches and the best model was selected based on the validation result. We found that multiple template based approach have given better accuracy. The generated structures can be used in future for further binding site and docking analysis.

Inhibitory Effects of Total Saponin Korean Red Ginseng on Thromboxane A2 Production and P-Selectin Expression via Suppressing Mitogen-Activated Protein Kinases

  • Shin, Jung-Hae;Kwon, Hyuk-Woo;Rhee, Man Hee;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.23 no.4
    • /
    • pp.310-320
    • /
    • 2017
  • Ginseng has been widely used for traditional medicine in eastern Asia and is known to have inhibitory effects on cardiovascular disease (CVD) such as thrombosis, atherosclerosis, and myocardial infarction. Because, platelet is a crucial mediator of CVD, many studies are focusing on inhibitory mechanism of platelet functions. Among platelet activating molecules, thromboxane $A_2$ ($TXA_2$) and P-selectin play a central role in CVD. $TXA_2$ leads to intracellular signaling cascades and P-selectin plays an important role in platelet-neutrophil and platelet-monocyte interactions leading to the inflammatory response. In this study, we investigated the inhibitory mechanisms of total saponin fraction from Korean red ginseng (KRG-TS) on $TXA_2$ production and P-selectin expression. Thrombin-elevated $TXA_2$ production and arachidonic acid release were decreased by KRG-TS dose (25 to $150{\mu}g/mL$)-dependently via down regulation of microsomal cyclooxygenase-1 (COX-1), $TXA_2$ synthase (TXAS) activity and dephosphorylation of cytosolic phospholipase $A_2$ ($cPLA_2$). In addition, KRG-TS suppressed thrombin-activated P-selectin expression, an indicator of granule release via dephosphorylation of mitogen-activated protein kinases (MAPK). Taken together, we revealed that KRG-TS is a beneficial novel compound inhibiting $TXA_2$ production and P-selectin expression, which may prevent platelet aggregation-mediated thrombotic disease.

Antiplatelet Effects of Cordycepin-Enriched WIB-801CE from Cordyceps militaris: Involvement of Thromboxane A2, Serotonin, Cyclooxygenase-1, Thromboxane A2 Synthase, Cytosolic Phospholipase A2

  • Ok, Woo Jeong;Nam, Gi Suk;Kim, Min Ji;Kwon, Hyuk-Woo;Kim, Hyun-Hong;Shin, Jung-Hae;Lim, Deok Hwi;Kwon, Ho-Kyun;Lee, Chang-Hwan;Chung, Soo-Hak;Kim, Jong-Lae;Park, Hwa-Jin
    • Biomedical Science Letters
    • /
    • v.22 no.4
    • /
    • pp.127-139
    • /
    • 2016
  • A species of the fungal genus Cordyceps has been used as an ingredient of traditional Chinese medicine. In this study, we prepared cordycepin-enriched WIB-801CE, an ethanol extract from culture solution of Cordyceps militaris-hypha, and evaluated its antiplatelet effects on human platelet aggregation. WIB-801CE dose-dependently inhibited ADP-, collagen-, and thrombin-induced platelet aggregation. These antiplatelet effects by WIB-801CE were associated with the attenuation of thromboxane $A_2$ ($TXA_2$) production and serotonin release by ADP, collagen, and thrombin. The inhibition of $TXA_2$ production by WIB-801CE was due to the inhibition of cyclooxygenase-1, $TXA_2$ synthase, and cytosolic phospholipase $A_2$ activity. Therefore, these data suggest that WIB-801CE may be a beneficial component against protection from platelet aggregation-mediated thrombotic disease.

Involvement of Thromboxane $A_2$ in the Modulation of Pacemaker Activity of Interstitial Cells of Cajal of Mouse Intestine

  • Kim, Jin-Ho;Choe, Soo-Jin;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Choi, Seok;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.1
    • /
    • pp.25-30
    • /
    • 2008
  • Although many studies show that thromboxane $A_2\;(TXA_2)$ has the action of gastrointestinal (GI) motility using GI muscle cells and tissue, there are no reports on the effects of $TXA_2$ on interstitial cells of Cajal (ICC) that function as pacemaker cells in GI tract. So, we studied the modulation of pacemaker activities by $TXA_2$ in ICC with whole cell patch-clamp technique. Externally applied $TXA_2\;(5{\mu}M)$ produced membrane depolarization in current-clamp mode and increased tonic inward pacemaker currents in voltage-clamp mode. The tonic inward currents by $TXA_2$ were inhibited by intracellular application of GDP-${\beta}$-S. The pretreatment of ICC with $Ca^{2+}$ free solution and thapsigargin, a $Ca^{2+}$-ATPase inhibitor in endoplasmic reticulum, abolished the generation of pacemaker currents and suppressed the $TXA_2$-induced tonic inward currents. However, chelerythrine or calphostin C, protein kinase C inhibitors, did not block the $TXA_2$-induced effects on pacemaker currents. These results suggest that $TXA_2$ can regulate intestinal motility through the modulation of ICC pacemaker activities. This modulation of pacemaker activities by $TXA_2$ may occur by the activation of G protein and PKC independent pathway via extra and intracellular $Ca^{2+}$ modulation.

Activities of Phospholipase $A_2$ and Cyclooxygenase, and Syntheses of Thromboxane and Prostacyclin in Streptozotocin Induced Diabetic Rats (Streptozotocin 유도 당뇨쥐에서의 Phospholipase $A_2$, Cyclooxygenase 활성과 Thromboxane 및 Prostacyclin합성)

  • 이순재;양정아;김성옥;최정화;곽오계;장현욱
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.27 no.1
    • /
    • pp.175-181
    • /
    • 1998
  • The relation between lipid peroxidation and thrombotic reaction were investigated in streptozotocin (STZ)-induced diabetic rats. Sprague-Dawley male rats weighing 100$\pm$10gm were randomly assigned to normal and STZ-induced diabetic group(DM). Diabetes was experimentally induced by intravenous injection of 55mg/kg of body weight of STZ in citrate buffer(pH 4.3) after 4 weeks feeding of basal diet. Animals were sacrificed at the 6th day of diabetic states. Body weight gains were lower in diabetic group after STZ injection. Serum levels of thiobarbituric acid reacting substances(TBARS) that were markedly increased in DM group compared with of normal group. TBARS levels of HDL and LDL were similar patterns to total TBARA of serum. Activities of platelet phospholipase A2(PLA2) were higher in diabetic group than those of normal group. Activities of platelet cyclooxygenase were 106% in DM group than normal group. Platelet thromboxane A2(TXA2) formation was increased in DM group than normal group. Production of aortic prostacyclin(PGI2) was lower in diabetic group than that of normal group. PGI2/TXA2 ratios were decreased by 55% in DM groups than those of normal group. The present results indicate that STZ-induced diabetic rats are more sensitive to oxidative stess which leads to acceleration of lipid peroxidation and platelet aggregability. In conclusion, accelerating effect of lipid peroxidation and thrombogenesis in diabetic state is regareded to be resulted from enhancement of PLA2 activity and arachidonic acid metabolism, inhibition of antiaggrgating agent and aortic PGI2 formation.

  • PDF

Inhibitory Effects of Euchrestaflavone B on Thrombus Formation via Regulation of Cyclic Nucleotides in Collagen-induced Platelets (콜라겐 유도의 혈소판에서 사이클릭 뉴클레오티드의 조절을 통한 Euchrestaflavone B의 혈전 형성 억제 효과)

  • Kwon, Hyuk-Woo
    • Korean Journal of Pharmacognosy
    • /
    • v.51 no.4
    • /
    • pp.231-237
    • /
    • 2020
  • Euchrestaflavanone B (EFB) is a flavonoid that can be found in root bark, particularly in Cudrania tricuspidata (C. tricuspidata). The extract of C. tricuspidata is widespread throughout Asia and used in traditional medicine. In a previous study, we found anti-platelet effects of substances isolated from C. tricuspidata on collagen-induced human platelets. However, the C. tricuspidata still contains numerous substances, thus, we have searched new candidate, EFB isolated from C. tricuspidata for anti-platelet effect. Our results showed that EFA inhibited collagen-induced platelet aggregation and glycoprotein IIb/IIIa (αIIb/β3)-mediated signaling events, including platelet adhesion, granule secretion, thromboxane A2 production and clot retraction. These results suggest that EFA has inhibitory effects on human platelet activities and thrombus formation and has potential value as a natural substance for preventing platelet-induced thrombosis.

Total Saponin from Korean Red Ginseng Inhibits Thromboxane A2 Production Associated Microsomal Enzyme Activity in Platelets

  • Lee, Dong-Ha;Cho, Hyun-Jeong;Kang, Hye-Yeon;Rhee, Man-Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.36 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Ginseng, the root of Panax ginseng Meyer, has been used frequently in traditional oriental medicine and is popular globally. Ginsenosides, which are the saponins in ginseng, are the major components having pharmacological and biological activities, including anti-diabetic and anti-tumor activities. In this study, we investigated the effects of total saponin from Korean red ginseng(TSKRG) on thrombin-produced thromboxane $A_2$ ($TXA_2$), an aggregating thrombogenic molecule, and its associated microsomal enzymes cyclooxygenase (COX)-1 and $TXA_2$ synthase (TXAS). Thrombin (0.5 U/mL) increased $TXA_2$ production up to 169 ng/$10^8$ platelets as compared with control (0.2 ng/$10^8$ platelets). However, TSKRG inhibited potently $TXA_2$ production to the control level in a dose-dependent manner, which was associated with the strong inhibition of COX-1 and TXAS activities in platelet microsomes having cytochrome c reductase activity. The results demonstrate TSKRG is a beneficial traditional oriental medicine in platelet-mediated thrombotic diseases via suppression of COX-1 and TXAS to inhibit production of $TXA_2$.

The Inhibitory Effect of Pioglitazone on Agonist-dependent Vascular Contractility

  • Je, Hyun-Dong;Cha, Sung-Jae;Jeong, Ji-Hoon
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.1
    • /
    • pp.72-77
    • /
    • 2008
  • The present study was undertaken to determine whether pioglitazone treatment influences on the agonist-induced vascular smooth muscle contraction and, if so, to investigate the related mechanism. The measurement of isometric contractions using a computerized data acquisition system was combined with molecular experiments. Pioglitazone decreased Rho-kinase activating agonist-induced contraction but not phorbol ester-induced contraction suggesting the least involvement of $Ca^{2+}$-independent thin filament regulation of contractility. Furthermore, pioglitazone decreased thromboxane $A_2$ mimeticinduced phosphorylation of MYPT1 at Thr855, the newly-highlighted site, instead of Thr696. In conclusion, this study provides the evidence and possible related mechanism concerning the vasorelaxing effect of pioglitazone as an antihypertensive on the agonist-induced contraction in rat aortic rings regardless of endothelial function.