• Title/Summary/Keyword: Three-sheet metal

Search Result 127, Processing Time 0.019 seconds

Fatigue Characteristics of SPFC590 Laser Welded Sheet Metal for Automobile Body Panel (자동차 차체용 SPEC590강 레이저 용접판재의 피로특성)

  • 한문식;이양섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.143-150
    • /
    • 2003
  • Experimental research has been carried out to investigate the characteristics of the fatigue crack initiation and propagation behavior of Tailor Welded Blank(TB) sheet used for vehicle body. We used three types of specimens which were machined of the same base metal: one is 1.4mm thick, another is 1.6mm thick, and the third(TB specimen) is laser-welded of two specimens(1.4mm and 1.6mm thick ones). The results of tensile and hardness test indicate that the yield strength of the TB specimen is the highest, and the hardness around welding bead is higher than that of base metal. Fatigue strength and fatigue limit of the TB specimen are much superior to those of the base metal up to $10^6$ cycles. The fatigue crack propagation of the heat-affected zone of the TB specimen is slower than that of the base metal. Welding bead has the fastest crack Propagation in the low stress intensity factor range$(\DeltaK)$ region, but the slowest in the high $\DeltaK$ region. The fatigue propagation characteristic of the TB specimen is relatively stable in comparison with that of the base metal in the high ${\Delta}K$ region around over $28MPa\sqrt{m}$.

Forming Accuracy Comparison Between Positive and Negative Incremental Forming Al 1050 (AL1050 소재의 양·음각 점진성형 공법간 성형 정밀도 비교)

  • Lee, Kyeong-Bu;Oh, Hyun-Man;Kang, Jae-Gwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.800-805
    • /
    • 2013
  • Incremental forming of sheet metal is a modern method of forming sheet metal, where parts can be formed without the use of dedicated dies. Existing experimental configurations for incremental forming can be broadly classified into two categories, i.e., negative and positive forming. In this paper, forming qualities such as shape accuracy and surface roughness of Al 1050 material were discussed for different forming methods. The formed and the corresponding opposing surfaces were measured with a three-dimensional scanner and a surface roughness tester. It was found that in terms of shape accuracy, the best opposing surface was obtained with positive forming, whereas the worst formed surface was obtained with negative forming; furthermore, the opposing surface is always better than the formed surface, regardless of the forming method used.

Modeling of a Ductile Fracture Criterion for Sheet Metal Considering Anisotropy (판재의 이방성을 고려한 연성파단모델 개발)

  • Park, N.;Huh, H.
    • Transactions of Materials Processing
    • /
    • v.25 no.2
    • /
    • pp.91-95
    • /
    • 2016
  • This paper is concerned with modeling of a ductile fracture criterion for sheet metal considering anisotropy to predict the sudden fracture of advanced high strength steel (AHSS) sheets during complicated forming processes. The Lou−Huh ductile fracture criterion is modified using the Hill’s 48 anisotropic plastic potential instead of the von Mises isotropic plastic potential to take account of the influence of anisotropy on the equivalent plastic strain at the onset of fracture. To determine the coefficients of the model proposed, a two dimensional digital image correlation (2D-DIC) method is utilized to measure the strain histories on the surface of three different types of specimens during deformation. For the derivation of an anisotropic ductile fracture model, principal stresses (𝜎1,𝜎2, 𝜎3) are expressed in terms of the stress triaxiality, the Lode parameter, and the equivalent stress (𝜂𝐻, 𝐿,) based on the Hill’s 48 anisotropic plastic potential. The proposed anisotropic ductile fracture criterion was quantitatively evaluated according to various directions of the maximum principal stress. Fracture forming limit diagrams were also constructed to evaluate the forming limit in sheet metal forming of AHSS sheets over a wide range of loading conditions.

Influence of the Part Shape Complexity and Die Type on Forming Accuracy in Incremental Sheet Metal Forming (점진성형에서 형상의 복잡도와 다이의 종류가 성형 정밀도에 미치는 영향)

  • Lee, Kyeong-Bu;Kang, Jae-Gwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.512-518
    • /
    • 2014
  • In this paper, the influence of part shape complexity and die type on forming accuracy in incremental sheet metal forming is presented. The part shape complexities are classified into two types, namely, of one and two-step shapes. Correspondingly, die types are classified into three types, namely, of no-, partial, and full die types. The experimental tests are performed separately on negative and positive forming methods. It is shown that for the one-step shape, there are no significant differences in forming errors between the cases of no- and full die types when the negative forming method is used. Furthermore, the full die type is better than the partial die when positive forming is used. For the two-step shape case, the full die type always exhibits better forming accuracy than the no- and partial die types, irrespective of the forming method used.

Effect of drawbead process parameters on the drawing characteristics of sheet metals for automotive parts (자동차용 판재 성형시 드로우비드 공정인자별 인출특성에 대한 연구)

  • 김원태;이동활;강우순;서만석;문영훈
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10a
    • /
    • pp.140-143
    • /
    • 2003
  • The drawbead is an important part in sheet metal forming for automotive part and its effect is affected by various process parameters. Therefore in this study, drawbead friction test was performed at various process parameters - panels (cold rolled and galvanized sheet steel), lubricants (having three different viscosities), bead materials(steel, iron) and surface treatment of bead (Cr plating). Circular shape bead has been used for the test. The results show that friction and drawing characteristics were mainly influenced by the nature of zinc coating, viscosity of lubricants, surface treatment of a bead and hardness of coated layer.

  • PDF

The Sectional Analysis of Trunk-lid using the Equilibrium Approach and Three-Dimensional Shape Composition (평형해법을 이용한 트렁크 리드의 단면해석과 3차원 형상합성)

  • 정동원
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.2
    • /
    • pp.66-71
    • /
    • 2001
  • A sectional analysis of trunk-lid carried out by using the equilibrium approach based on the force balance together with geometric relations and plasticity theory. In computing a force balance equation, it is required to define a geometric curve approximating the shape of sheet metal at any step of deformation from the interaction between the die and the deformed sheet. The trunk-lid panel material is assumed to possess normal anisotropy and to obey Hill's new yield criterion. Deformation of each section of trunk-lid panel is simulated and composed to get the three-dimensional shape by using CAD technique. It was shown that the three-dimensional shape composition of the two-dimensional analysis.

  • PDF

Effects of Brazing Current on Mechanical Properties of Gas Metal Arc Brazed Joint of 1000MPa Grade DP Steels (1000MPa급 DP강 MIG 아크 브레이징 접합부의 기계적 성질에 미치는 브레이징 전류의 영향)

  • Cho, Wook-Je;Yoon, Tae-Jin;Kwak, Sung-Yun;Lee, Jae-Hyeong;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.35 no.2
    • /
    • pp.23-29
    • /
    • 2017
  • Mechanical properties and hardness distributions in arc brazed joints of Dual phase steel using Cu-Al insert metal were investigated. The maximum tensile shear load was 10.4kN at the highest brazing current. It was about 54% compared to tensile load of base metal. This joint efficiency is higher than that of joint of DP steel using Cu-based filler metals which are Cu-Si, Cu-Sn. Fracture positions can be divided into two types. Crack initiation commonly occurred at three point junction among upper sheet, lower sheet and the fusion zone. However crack propagations were different with increasing the brazing current. In case of the lower current, it instantaneously propagated along with the interface between fusion zone and upper base material. On the other hand, in case of higher current, a crack propagation occurred through fusion zone. When the brazing current is low (60, 70A), the interface shape is flat type. However the interface shape is rough type, when the brazing current is high (80A). It is thought that the interface shapes were the reason why the crack propagations were different with brazing current. The interface was the intermetallic compounds which consisted of $(Fe,Al)_{0.85}Cu_{0.15}$ IMC formed by crystallization at $1200^{\circ}C$during cooling. Therefore the maximum tensile shear load and the fracture behavior were determined by a interface shape and effective sheet thickness of the fracture position.

Prediction of springback on cold forming of Mg-alloy (Mg 합금 판재 냉간 성형품의 탄성회복량 예측)

  • Lee Y. S.;Kim M. C.;Kwon Y. N.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.43-46
    • /
    • 2004
  • Since Mg alloy has many attractive advantages among the practically used metals, many researchers have been studied to develop useful process and material. However, study for sheet forming has not been a few because of low formability on room temperature. Formability and springback for AZ31 alloy sheet have been studied to develop the cold forming technology. The experimental and FE analysis were performed to analyzed the springback amounts by using a model of our on. A different three materials were used to investigate the effects of material characteristics. The springback amounts of Mg-alloy sheet formed part were larger than that of the other material.

  • PDF

Fabrication and Static Bending Test in Ultra Light Inner Structured and Bonded(ISB) Panel Containing Repeated Inner Pyramidal Structure (피라미드 형상의 내부구조를 가지는 초경량 금속 내부구조 접합판재의 제작 및 정적 굽힘실험)

  • Jung Chang Gyun;Yoon Seok-Joon;Lee Sang Min;Na Suck-Joo;Lee Sang-hoon;Ahn Dong-Gyu;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.175-182
    • /
    • 2005
  • Inner structured and bonded panel, or ISB Panel, as a kind of sandwich type panel, has metallic inner structures which have low relative density, because of their dimensional shape of metal between a pare of metal skin sheets or face sheets. In this work, ISB panels and inner structures formed as repeated pyramidal shapes are introduced. Pyramidal structures are formed easily with expanded metal sheet by the crimping process. Three kinds of pyramidal structures are made and used to fabricate test specimen. Through the multi-point electrical resistance welding, inner structures are bonded with skin sheet. 3-point bending tests are carried out to measure the bending stiffness of ISB panel and experimental results are discussed.

An Improvement of Strain Measuring Technique by using the B-spline Surface Interpolation Method (3차원 곡면 내삽법을 이용한 자동차 박판 부품의 변형율 측정법 개선)

  • 김종봉;양동열
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.141-150
    • /
    • 1998
  • The measurement of strains in stamped sheet metal is essential to the design and manufacture of sound sheet metal products. The measured strains can also be used in verifying the reliability of the computer analysis such as finite element analysis. In most engineering applications, strains are measured from the deformed square grids or deformed circular grids in comparison with the initial undeformed grids. In such a case, however, strains are averaged in each grid and the localized strain in a region smaller than a grid size can not be measured. In the present study, the B-spline surface interpolation technique is introduced in order to measure the strains more exactly and effectively. The strains calculated by using the surface interpolation technique are compared with the strains calculated from the three-noded grids as well as with the finite element analysis.

  • PDF