• Title/Summary/Keyword: Three-phase PWM AC/DC converter

Search Result 81, Processing Time 0.03 seconds

A study on the Conducted Noise Reduction in Random PWM (Random PWM 기법을 이용한 전도노이즈 저감)

  • Jeong, Dong-Hyo
    • Proceedings of the KIEE Conference
    • /
    • 2006.10b
    • /
    • pp.154-158
    • /
    • 2006
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. Random Pulse Width Modulation (RPWM) is peformed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300v/1kW with $5%{\sim}30%$ white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

  • PDF

A Study on the D-Q Control based Output Voltage Control Algorithm and EMTP-RV Simulation of Three-phase 6-Pulse PWM Rectifier (3상 6펄스 PWM 정류기의 D-Q 제어 기반 출력전압 제어 알고리즘 및 EMTP-RV 시뮬레이션 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.45-52
    • /
    • 2021
  • The space vector control based voltage control method for a three-phase PWM rectifier requires a lot of effort to design an optimal switching pattern since a switching pattern for the switching section must be designed. In this study, a D-Q control based SPWM output voltage control algorithm was studied for the three-phase six-pulse CVS type rectifier. In the output voltage control algorithm, three-phase reference signals are obtained from the D-Q transformation based on the space vector representation method, instead of the switching pattern, SPWM method is used to generate rectifier switching control signals. Next, a three-phase six-pulse CVS PWM rectifier based on D-Q transformation and SPWM was modeled using EMTP-RV. Finally, the validity of the D-Q control-based SPWM voltage control algorithm was confirmed by comparing the output voltage waveform obtained through EMTP-RV simulation works with a reference value and confirming that the output voltage accurately follows the reference voltage.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

The Improvement Techniques of Characteristics using DSP Chip in Switching Power Converter System (DSP칩을 이용한 스위칭 전력변환 시스템의 특성 개선 기법)

  • Kang Min-Su;Kim Sang-Ug;Im Dong-Gi;Kang Ho-Hyun;Jeon Hee-Jong
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.670-672
    • /
    • 2004
  • In this paper, single phase boost converter with low current harmonic components and high power factor are proposed. A single-phase half-bridge rectifier based on a neutral point switch clamped scheme is proposed to draw a nearly unity power factor and regulate the DC link voltage. Three power switches are employed in the proposed rectifier. This rectifier is controlled to generate a bipolar or unipolar PWM voltage waveform on the AC side. The proposed converter is implemented by a digital signal processor.

  • PDF

Combined test of Power Supply System for Korean High Speed Train (고속전철용 보조전원장치 시스템 조합시험)

  • Cho, Hyun-Wook;Kim, Yuen-Chung;Kim, Tae-Hwan;Jang, Kyung-Hyun;Kim, Chul-Ho
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.619-625
    • /
    • 2008
  • Electrical Power supply System conditions of korea high speed train consists of main transformer, four AC-DC PWM converter of Auxiliary Block, Battery Charger in Power Car and Trailer Car, Trailer Inverter, Auxiliary inverter. Main transformer, at nominal voltage of 25kv supplied to secondary winding nominal output Voltage 383Vac, The Auxiliary block consists of AC-DC converters for generating 670VDC power, Auxiliary inverters for ventilation and air compressor, Trailer car inverter provide three phase power supplies at 440Vac for air conditioning and heating. The Battery charger Trailer and Power car supplies 72VDC all necessary equipment to energize the trainset equipment and suppy essential control. This Paper introduces the combined test results of the power supply system for korea high speed train. The main purpose of this combined test is to verify the performance of the power supply system that is designed to operate up to full load test.

  • PDF

Modulation, Harmonic Analysis, and Balancing Control for a New Modular Multilevel Converter

  • Li, Binbin;Zhang, Yi;Wang, Gaolin;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.163-172
    • /
    • 2016
  • The modular multilevel converter (MMC) has been receiving increased attentions in recent years. The new modular multilevel converter is a derivative topology from the traditional MMC in which the number of sub-modules (SMs) necessitated by each phase can be reduced by one. This paper presents a phase-shifted carrier pulse-width modulation (PSC-PWM) for the new MMC with an optimal phase-shifted angle to suppress the harmonics of the output voltage. Further, the harmonic features when the capacitor voltage of the middle SM is selected as two different values are also investigated. Moreover, in order to avoid introducing an unnecessary dc offset current at the ac terminals of the new MMC, a novel capacitor voltage balancing scheme is proposed by adjusting the amplitude of the reference signals rather than the offset. Finally, the validity and effectiveness of the proposed modulation and balancing schemes have been verified by experimental results based on a three-phase prototype of the new MMC.

Direction for Development of Energy Regeneration Device for DC Electric Railway System (DC전철구간의 에너지회생장치 개발 방향)

  • Kim, Yong-Ki;Bae, Chang-Han;Han, Moon-Seob;Yang, Young-Chul;Jang, Su-Jin
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.804-808
    • /
    • 2007
  • when electric traction system used DC 1500V runs on decline of rail road track and slows down, Dc voltage goes beyond regular voltage. In this case extra power is forcibly wasted by resister because rectifier of substation and electric train including power converter and so on are out of order. This paper described a DC electric railway system, which can generate the excessive DC power form DC bus line to AC source in substation for traction system. The proposed regeneration inverter system for DC traction can be used as both an inverter and an active power filter(APF). As a regeneration inverter mode, it can recycle regenerative energy caused by decelerating tractions and as an active power filter mode, it can compensate for harmonic distortion produced by the rectifier substation. In addition, electric traction system products harmonic current and voltage distortion and reactive power because power converter is used so regeneration inverter normally runs such as active power filter(APF) for improving power quality. From the viewpoint of both power capacity and switching losses, the system is designed on the basis of three phase PWM inverters and composed of parallel inverters, output transformers, and an LCL filter.

  • PDF

A study on the Conducted Noise Reduction in Three-Phase Boost Converter using Random Pulse Width Modulation (Random PWM 기법을 이용한 3상 승압형 컨버터 전도노이즈 저감에 관한 연구)

  • Jung, Dong-Hyo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.120-125
    • /
    • 2002
  • The switching-mode power converter has been widely used because of its features of high efficiency and small weight and size. These features are brought by the ON-OFF operation of semiconductor switching devices. However, this switching operation causes the surge and EMI(Electromagnetic Interference) which deteriorate the reliability of the converter themselves and entire electronic systems. This problem on the surge and noise is one of the most serious difficulties in AC-to-DC converter. In the switching-mode power converter, the output voltage is generally controlled by varying the duty ratio of main switch. When a converter operates in steady state, duty ratio of the converter is kept constant. So the power of switching noise is concentrated in specific frequencies. Generally, to reduce the EMI and improve the immunity of converter system, the switching frequency of converter needs to be properly modulated during a rectified line period instead of being kept constant. Random Pulse Width Modulation (RPWM) is performed by adding a random perturbation to switching instant while output-voltage regulation of converter is performed. RPWM method for reducing conducted EMI in single switch three phase discontinuous conduction mode boost converter is presented. The more white noise is injected, the more conducted EMI is reduced. But output-voltage is not sufficiently regulated. This is the reason why carrier frequency selection topology is proposed. In the case of carrier frequency selection, output-voltage of steady state and transient state is fully regulated. A RPWM control method was proposed in order to smooth the switching noise spectrum and reduce it's level. Experimental results are verified by converter operating at 300V/1kW with 5%~30% white noise input. Spectrum analysis is performed on the Phase current and the CM noise voltage. The former is measured with Current Probe and the latter is achieved with LISN, which are connected to the spectrum analyzer respectively.

IP Voltage Controller of Three-phase PWM Converter for Power Supply of Communication System (IP 제어기를 이용한 통신 전원용 3상 PWM 컨버터의 전압 제어)

  • Shin, Hee-Keun;Kim, Hag-Wone;Cho, Kwan-Yuhl;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2722-2728
    • /
    • 2011
  • 3Phase PWM rectifier has become increasingly popular due to its capability of nearly sinusoidal waveform of the input current, and nearly unity power factor operation as a AC/DC rectifier of high capacity telecommunication power supply system. Generally, PI controller is used as a voltage controller of PWM rectifier and voltage controller must be designed to have low overshoot in transient state to get a reliability and stable operation. However, in the application of telecommunication in which load condition is varied very fast, the voltage controller must have a large bandwidth to reduce output voltage variation. The PI controller with large bandwidth arouse the excessive overshoot of the output voltage, and this large output voltage variation degrades the reliability of communication power of the three-phase PWM Rectifier. In this paper, new IP voltage controller for 3 phase PWM rectifier is proposed which has relatively low transient output voltage variation. The improved output characteristics of the transient state voltage responses of the starting and at load changes of the proposed voltage controller are proved by simulations and experiments.

Design Considerations for Auto-Connected Multi-Pulse Rectiviers for High Power AC Motor Drives

  • ;Prasad N. Enjeti
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.5
    • /
    • pp.413-422
    • /
    • 1999
  • Auto-connected multipulse(12/24pulse) rectifier schemes are cost effective methods for reducing line current hamonics in PWM drive systems. Employing these schemes to enhance utility power quality requires careful attention to several design considerations In particular, excursion of dc-link voltage at no load, effect of pre-existing voltage distortion, impedance mismatches, unequal diode drops on rectifier current sharing and performance, are fully analyzed, Several corrective measures to improve the performance of 12/24­pulse rectifier systems are also discussed. Finally, experimental results on a 460V, 60Hz 400kVA commercial ASD, retrofitted with 12/24pulse rectifier systems are discussed in detail.

  • PDF