• Title/Summary/Keyword: Three-dimensional models

Search Result 1,611, Processing Time 0.032 seconds

Structural Shape Estimation Based on 3D LiDAR Scanning Method for On-site Safety Diagnostic of Plastic Greenhouse (비닐 온실의 현장 안전진단을 위한 3차원 LiDAR 스캔 기법 기반 구조 형상 추정)

  • Seo, Byung-hun;Lee, Sangik;Lee, Jonghyuk;Kim, Dongsu;Kim, Dongwoo;Jo, Yerim;Kim, Yuyong;Lee, Jeongmin;Choi, Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.5
    • /
    • pp.1-13
    • /
    • 2024
  • In this study, we applied an on-site diagnostic method for estimating the structural safety of a plastic greenhouse. A three-dimensional light detection and ranging (3D LiDAR) sensor was used to scan the greenhouse to extract point cloud data (PCD). Differential thresholds of the color index were applied to the partitions of raw PCD to separate steel frames from plastic films. Additionally, the K-means algorithm was used to convert the steel frame PCD into the nodes of unit members. These nodes were subsequently transformed into structural shape data. To verify greenhouse shape reproducibility, the member lengths of the scan and blueprint models were compared with the measurements along the X-, Y-, and Z-axes. The error of the scan model was accurate at 2%-3%, whereas the error of the blueprint model was 5.4%. At a maximum snow depth of 0.5 m, the scan model revealed asymmetric horizontal deflection and extreme bending stress, which indicated that even minor shape irregularities could result in critical failures in extreme weather. The safety factor for bending stress in the scan model was 18.7% lower than that in the blueprint model. This phenomenon indicated that precise shape estimation is crucial for safety diagnostic. Future studies should focus on the development of an automated process based on supervised learning to ensure the widespread adoption of greenhouse safety diagnostics.

A Study on Reliability and Training of Face-Bow Transfer Procedure (안궁의 신뢰성과 학습효과에 관한 연구)

  • So, Woong-Seup;Choi, Dae-Kyun;Kwon, Kung-Rock;Lee, Seok-Hyung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.19 no.4
    • /
    • pp.297-308
    • /
    • 2003
  • Face-bow is used to transfer models to the articulator in diagnosing the patient or treating problems associated with occlusion. However, there have been few reports on the reliability of the face-bow procedure and the relationship between the experience of the operator and the reliability of the face-bow procedure. The purposes of this study are to examine the reliability of the face-bow procedure and to evaluate whether the face-bow transferring has any training effect. Nine dentists working at M hospital conducted a face-bow transfer in one patient having a normal dentition and interdental relationship. The procedure was done two times a week for four weeks. The maxillary model was mounted to the articulator every time, then the landmarks on the maxillary right first molar, the maxillary left central incisor, and the maxillary left first molar were measured with a special three-dimensional instrument. These data were input into a computer, and evaluated statistically. The results were as follows ; 1. When examined with ANOVA test, the results were p=0.2040 in maxillary right first molar, p=0.0578 in maxillary left incisor, and p=0.1433 in maxillary left first molar. There was no significant(0< $p{\leq}0.05$). 2. Training 1) The correlation coefficient between trial and rejection was -0.578 when analyzed with T-distribution. The more we tried, the less errors we found. 2) When the S.D. of the first three trials was compared to the S.D. of the last three trials in face-bow transfer, the results showed that the former was larger than the latter in thirty-nine times, and the latter was larger than the former in fifteen times. The more we tried face-bow transfer, the less errors we found. 3. When the S.D. of x, y, z coordinates were examined, the S.D. of x coordinates had the largest measurement in five times, the S.D. of y coordinates had the largest measurement in four times, and the S.D. of z coordinates had the largest measurement in nine times. The possibility which the error can occur in z coordinate was the highest.

Effect on measurements of anemometers due to a passing high-speed train

  • Zhang, Jie;Gao, Guangjun;Huang, Sha;Liu, Tanghong
    • Wind and Structures
    • /
    • v.20 no.4
    • /
    • pp.549-564
    • /
    • 2015
  • The three-dimensional unsteady incompressible Reynolds-averaged Navier-Stokes equations and k-${\varepsilon}$ double equations turbulent model were used to investigate the effect on the measurements of anemometers due to a passing high-speed train. Sliding mesh technology in Fluent was utilized to treat the moving boundary problem. The high-speed train considered in this paper was with bogies and inter-carriage gaps. Combined with the results of the wind tunnel test in a published paper, the accuracy of the present numerical method was validated to be used for further study. In addition, the difference of slipstream between three-car and eight-car grouping models was analyzed, and a series of numerical simulations were carried out to study the influences of the anemometer heights, the train speeds, the crosswind speeds and the directions of the induced slipstream on the measurements of the anemometers. The results show that the influence factors of the train-induced slipstream are the passing head car and tail car. Using the three-car grouping model to analyze the train-induced flow is reasonable. The maxima of horizontal slipstream velocity tend to reduce as the height of the anemometer increases. With the train speed increasing, the relationship between $V_{train}$ and $V_{induced\;slipstream}$ can be expressed with linear increment. In the absence of natural wind conditions, from the head car arriving to the tail car leaving, the induced wind direction changes about $330^{\circ}$, while under the crosswind condition the wind direction fluctuates around $-90^{\circ}$. With the crosswind speed increasing, the peaks of $V_X,{\mid}V_{XY}-V_{wind}{\mid}$ of the head car and that of $V_X$ of the tail car tend to enlarge. Thus, when anemometers are installed along high-speed railways, it is important to study the effect on the measurements of anemometers due to the train-induced slipstream.

Performance Analysis of Soft Handoff Methods using Simulation (시뮬레이션을 이용한 소프트 핸드오프 방식의 성능 분석)

  • Han, Kyung-Sook;Kim, Tae-Jung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.6 no.4
    • /
    • pp.411-420
    • /
    • 2000
  • The performance of soft handoffs of CDMA mobile communication systems is potentially determined by several factors such as handoff-related system parameters (T_ADD, T_DROP, T_COMP, T_TDROP), mobile stations' mobility, service areas, capacity of base stations. Due to the importance of handoffs in mobile communications, several methods have been proposed and tested through computer simulations to prove the efficiency of proposed methods. Different assumptions on the above mentioned factors often produce different simulation results. Therefore, the credibility of a simulation result is directly determined by the objectivity of the assumptions made by the simulation. This paper proposes a new soft handoff method that controls handoff delay time based on a mobile station's speed, and compares it with the current method of CDMA systems. The simulation results showed that the new method is much more efficient for mobile stations that are free in their moving direction and space than for those restricted in their moving direction and space. In addition, the results showed that even the same handoff method may produces different simulation results depending on whether a service area is modeled as two-dimensional space or three-dimensional space. These results indicate the importance of suitable models of user mobility, especially the movement types and space allowed for mobile stations, which have been neglected in simulation studies of mobile communications.

  • PDF

A STUDY ON THE STRESS ANALYSIS OF THREE ROOT-FORM IMPLANTS WITH FNITE ELEMENT ANALYSIS (유한요소분석법을 이용한 치근형 임플랜트의 응력분포에 관한 연구)

  • Moon, Byoung-Hwa;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.1
    • /
    • pp.129-150
    • /
    • 1993
  • Since the restoration or masticatory function is the most important aim of implants, it should be substituted for the role of natural teeth and deliver the stress to the bone under the continous load during function. In natural teeth, stress distribution can be obtained through enamel, dentin and cementum and the elasticity of the periodontal ligament play a role of buffering action. In contrast, implant prosthesis has a very unique characteristics that it delvers the load directly to bone through the implant and superstructure. This fact arise the needs to evaluate the stress distribution of the implant in the mechnical aspects, which has a similar role of natural teeth but different pathway of stress. With 3 kinds of implant in prevalent use, 2 types of experimental PEA implant models were made, axisymmetric and 2-dimensional type. In axisymmetric model, the stiffness of the part including the prosthesis and implant which extrude out of bony surface could be calculated with displacement of the superstructure un er 100N vertical load and then damping effects could be determined through this stiffness. In axisymmetric FEA model, load to the bone could be deduced by evaluation the stress distribution of the designed surface under the 100N vertical force and in 2-dimensional model, 100N eccentric vertical load and 20N horizontal loda. The result are as follows. 1. In every implant, stress to the bone tends to be concenturated on the cortical bone. 2. Though the stress of the cancellous bone is larger at the apex of implants, it is less compared with cortical bone. 3. Under 20N horizontal load, stress of the left and right sides of implant shows a symmetrical pattern. But under 100N eccentric vertical load, loaded side shows much larger stress value. 4. In the 1mm interface, stress distribution among implants tend to have a similar pattern. But under 20N horizontal load apposite side of being loaded shows less stress in IMZ. 5. In the case of screw type implant, stress tends to vary along with screw shape. 6. According to the result determined with microstrain, cancellous bone id generally under the condition of overload, while cortical bone is usually within the limitation of physiologic load. 7. In the Branemark implant, maximum stress to the cortical bone is larger than any other implant except for the condition of 20N horizontal force and 0.05mm interface. 8. Damping effects of implants is maximum in IMZ.

  • PDF

In vivo Evaluation of Osteoporotic Fracture Prevention of the site to which low Intensity Ultrasound is Irradiated using Mechanical Strength Simulations (역학적 강도 분석을 이용한 저강도 초음파의 조사 부위의 골다공증 골절 방지 효과 평가)

  • Woo, Dae-Gon;Kim, Chi-Hoon;Park, Ji-Hyung;Ko, Chang-Young;Kim, Han-Sung;Kim, Jin-Man;Kim, Sang-Hee;Lim, Do-Hyung
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.135-141
    • /
    • 2009
  • Purpose: The aim of present study is to evaluate a possibility of clinical application for the effect of low intensity ultrasound stimulation (LIUS) in mechanical characteristics of bone on osteoporotic fractures prevention. Materials and Methods: Eight virgin ICR mice (14 weeks old, approximate weight 25g) were ovariectomized (OVX) to induce osteoporosis. The right hind limbs were then stimulated with LIDS (US Group), whereas left hind limbs were not stimulated (CON Group). Both hind limbs of all mice were scanned by in-vivo micro-CT to acquire two-dimensional (2D) images at 0 week before stimulation and 3 weeks and 6 weeks after stimulation. Three-dimensional (3D) finite element (FE) models generated by scanned 2D images were used to determine quantitatively the effect of LIUS on strength related to bone structure. Additionally, distributions of Hounsfield units and elastic moduli, which are related to the bone quality, for the bones in the US and CON groups were determined to analyze quantitatively a degree of improvement of bone qualities achieved by LIUS. Results: The result of FE analysis showed that the structural strength in US Group was significantly increased over time (p<0.05), while that in CON Group was statistically constant over time (p>0.05). High values of Hounsfield units obtained from voxels on micro-CT images and high values of elastic moduli converted from the Hounsfield units were dominantly appeared in US Group compared with those in CON Group. Conclusion: These finding indicated that LIUS would improve the mechanical characteristics of osteoporotic bone via the effects of bone structure (bone strength) and quality (Hounsfield unit and elastic modulus). Therefore, the LIUS may decrease effectively the risk of osteoporotic fracture in clinics.

3 Dimensional Changes of Bedrock Surface with Physical Modelling of Abrasion (마식에 의한 기반암면의 표면 변화에 대한 실험 연구)

  • Kim, Jong-Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.42 no.4
    • /
    • pp.506-525
    • /
    • 2007
  • Incision into bedrock channel is the primary control of landform evolution, but research into bedrock incision process stagnated for long time. Due to the scaling problem of the application of results from flume studies to bedrock channel, there is a strong need to simulate the bedrock incision process with more realistic models. As a part of investigation into controls of bedrock channel incision, three-dimensional changes of rock surface with abrasion was investigated with physical modelling. 18 rock plates were abraded with various sediment particle size and sediment load and abraded surfaces of the plates were scanned with high resolution 3-D scanner. To identify the spatial pattern of erosion of the rock plates, various methods were used. There was no synthetic or holistic method that showed all features of bedrock plate produced by abrasion, so each plate was analyzed using some available methods. Contour maps, shaded relief maps and profiles show that abrasion concentrated on the centre of plate (cross profile) and upstream and downstream edges (longitudinal profile) and eroded area extended inwards. It also found that the cracks and boundaries of forming materials easily eroded than other parts. Changing patterns of surface roughness were investigated with profiles, regression analysis and spectral analysis. Majority of plates showed decrease in small-scale roughness, but it depends on microstructures of the plates rather than general hardness or other factors. SEM inspection results supported this idea.

Performance Analysis of a Statistical Packet Voice/Data Multiplexer (통계적 패킷 음성 / 데이터 다중화기의 성능 해석)

  • 신병철;은종관
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.11 no.3
    • /
    • pp.179-196
    • /
    • 1986
  • In this paper, the peformance of a statistical packet voice/data multiplexer is studied. In ths study we assume that in the packet voice/data multiplexer two separate finite queues are used for voice and data traffics, and that voice traffic gets priority over data. For the performance analysis we divide the output link of the multiplexer into a sequence of time slots. The voice signal is modeled as an (M+1) - state Markov process, M being the packet generation period in slots. As for the data traffic, it is modeled by a simple Poisson process. In our discrete time domain analysis, the queueing behavior of voice traffic is little affected by the data traffic since voice signal has priority over data. Therefore, we first analyze the queueing behavior of voice traffic, and then using the result, we study the queueing behavior of data traffic. For the packet voice multiplexer, both inpur state and voice buffer occupancy are formulated by a two-dimensional Markov chain. For the integrated voice/data multiplexer we use a three-dimensional Markov chain that represents the input voice state and the buffer occupancies of voice and data. With these models, the numerical results for the performance have been obtained by the Gauss-Seidel iteration method. The analytical results have been verified by computer simylation. From the results we have found that there exist tradeoffs among the number of voice users, output link capacity, voic queue size and overflow probability for the voice traffic, and also exist tradeoffs among traffic load, data queue size and oveflow probability for the data traffic. Also, there exists a tradeoff between the performance of voice and data traffics for given inpur traffics and link capacity. In addition, it has been found that the average queueing delay of data traffic is longer than the maximum buffer size, when the gain of time assignment speech interpolation(TASI) is more than two and the number of voice users is small.

  • PDF

A Study on Development of Assessment Model for Spatio-Temporal Changes in River Bed Using Numerical Models (수치모형을 이용한 하상변동 시공간 평가 기법 개발 연구)

  • Kim, Chul-Moon;Lee, Jeong-Ju;Choi, Su-Won;Ahn, Won-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.12
    • /
    • pp.975-990
    • /
    • 2011
  • In this study, to develop an assessment method for spatio-temporal riverbed changes, a 1-dimensional model (HEC-RAS) and a 2-dimensional model (CCHE2D) were built and applied. As for the analysis of a riverbed's long-term change in a real stream, three new assessment methods were developed, which are called the "Sediment section cumulative curve", "Sediment section moment", and "Sediment probability distribution function." These methods were used to assess the characteristics of riverbed changes using a consistent valuation standard and to understand changes in quantities intuitively. From the results of this study, sediment characteristics of cross sections can be detected effectively by applying the "Sediment section cumulative curve" method to determine whether there is any sedimentation or erosion in total emission. The amount of sedimentation or erosion occurring in the right or left banks, which divided by center column, could be presented as one criterion by applying the "Sediment section moment" method. This approach could be utilized as an indicator for sediment predictions. Spatio-temporal sediment variables can be presented quantitatively by determining the mean and uncertain boundaries through the "Sediment probability distribution function", and finally, the results can be illustrated for each cross section to provide intuitive recognition.

Analysis of Hydraulic effects on Piers and Transverse Overflow Type Structures in Urban Stream (도시하천의 교각 및 횡단 월류형 구조물에 의한 수리영향 분석)

  • Yoon, Sun-Kwon;Chun, Si-Young;Kim, Jong-Suk;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.197-212
    • /
    • 2008
  • Recently, stream flow analysis has been accomplished by one or two dimensional equations and was applied by simple momentum equations and fixed energy conservations which contain many condition limits. In this study, FLOW-3D using CFD (Computational Fluid Dynamics) was applied to stream flow analysis which can solve three dimensional RANS (Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behaviors and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as ${\kappa}-{\varepsilon}$, RNG (Renormalized Group) ${\kappa}-{\varepsilon}$ and LES (Large Eddy Simulation). Numerical analysis results have been illustrated by the turbulence energy effects, velocity of flow, water level pressure and eddy flows around the piers and transverse overflow type structures. These results will be able to used by basis data that catch hold of effects on long-term bed elevation changes, sediment accumulations, scours and water aggravations by removal of obsolete transverse over flow type structures in urban stream.