• Title/Summary/Keyword: Three-dimensional layout

Search Result 62, Processing Time 0.024 seconds

Optimal Two-Section Layouts for the Two-Dimensional Cutting Problem

  • Ji, Jun;Huang, Dun-hua;Xing, Fei-fei;Cui, Yao-dong
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.271-283
    • /
    • 2021
  • When generating layout schemes, both the material usage and practicality of the cutting process should be considered. This paper presents a two-section algorithm for generating guillotine-cutting schemes of rectangular blanks. It simplifies the cutting process by allowing only one size of blanks to appear in any rectangular block. The algorithm uses an implicit enumeration and a linear programming optimal cutting scheme to maximize the material usage. The algorithm was tested on some benchmark problems in the literature, and compared with the three types of layout scheme algorithm. The experimental results show that the algorithm is effective both in computation time and in material usage.

A Study on Localization System using 3D Triangulation Algorithm based on Dynamic Allocation of Beacon Node (비컨노드의 동적배치 기반 3차원 삼각측량 알고리즘을 적용한 위치인식 시스템에 대한 연구)

  • Lee, Ho-Cheol;Lee, Dong-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.4B
    • /
    • pp.378-385
    • /
    • 2011
  • The three-dimensional triangulation algorithm that the beacon nodes can be allocated to dynamically in not the experimental region but the practical region is suggested, and the performance of the localization system adapting the suggested algorithm is analyzed. The suggested algorithm adapts the computation method of the three dimensional point that the surfaces of three spheres overlapped, while the traditional triangulation algorithm adapts the computation method of the two dimensional point that three circles are overlapped in order to compute the distance between beacon nodes and mobile node that means a radius. In addition to this, to analyze the performance of the localization system adapting the suggested algorithm, first of all, the allocation layout of beacon nodes is made, and the allocation layout is modeled by selection of ten random distance values between mobile node and beacon nodes for computer simulation of the practical model. Next, the two dimensional coordinator of mobile node that is calculated by the suggested algorithm and the traditional triangulation algorithm is compared with each other. The localization measuring performance about three dimensional coordinator(z axis) of the suggested algorithm is also obtained by comparing with that of the practical model.

Design and optimization of layout patterns for rock TBM cutterheads

  • Ebrahim Farrokh
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.179-189
    • /
    • 2024
  • This paper presents a geomechanical framework for designing and optimizing layout patterns of cutterheads for rock Tunnel Boring Machines (TBMs), aiming to enhance their engineering performance. By examining the forces and moments exerted by rock, the study addresses geometric constraints associated with cutter boxes in key regions of the cutterhead, including the center, face, and gage areas, as well as the three-dimensional effects of cutterhead curvature on the geometric constraints of the back of the cutter boxes in the gage area. Novel formulas are proposed for determining the center points of cutter boxes and calculating both the minimum angular spacing and distance spacing between consecutive cutter boxes along a spiral path. The paper outlines an optimized layout design process for four cutterhead configurations: random, random paired, radial, and double spiral designs. Examples are provided to illustrate the results of applying these designs. The findings underscore the efficacy of the proposed methods in achieving a uniform and symmetrical distribution of cutters and buckets on the cutterhead surface. This approach effectively eliminates boundary overlap and minimizes unbalanced forces and moments. From a geomechanical standpoint, this framework offers a robust strategy for enhancing the performance and reliability of TBM cutterheads in rock tunneling operations.

A Framework for Automated Formwork Quality Inspection using Laser Scanning and Augmented Reality

  • Chi, Hung-lin;Kim, Min-Koo;Thedja, Julian
    • International conference on construction engineering and project management
    • /
    • 2020.12a
    • /
    • pp.13-22
    • /
    • 2020
  • Reinforcement steel fixing is a skilled and manually intensive construction trade. Current practice for the quality assessment of reinforcement steel fixing is normally performed by fabricators and has high potential in having errors due to the tedious nature of the work. In order to overcome the current inspection limitation, this study presents an approach that provides visual assistance and inspection enhancement for inspectors to assess the dimensional layout of reinforcement steel fixing. To this end, this study aims to establish an end-to-end framework for rebar layout quality inspection using laser scanning and Augmented Reality (AR). The proposed framework is composed of three parts: (1) the laser-scanned rebar data processing; (2) the rebar inspection procedure integrating with AR; and (3) the checking and fixing the rebar layout through AR visualization. In order to investigate the feasibility of the proposed framework, a case study assessing the rebar layout of a lab-scaled formwork containing two rebar layers is conducted. The results of the case studies demonstrate that the proposed approach using laser scanning and AR has the potential to produce an intuitive and accurate quality assessment for the rebar layout.

  • PDF

Reduced-Scale Model Tests on the Behavior of Tunnel Face Reinforced with longitudinal reinforcements (수평보강재로 보강된 터널 막장의 거동에 관한 축소 모형실험)

  • 유충식;신현강
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.79-86
    • /
    • 2000
  • This paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A series of reduced-scale model tests was carried out to in an attempt to verify previously performed three-dimensional numerical modeling and to investigate effects of reinforcement layout on the tunnel face deformation behavior The results of model tests indicate that the tunnel face deformation can significantly reduced by pre-reinforcing the tunnel face with longitudinal members and thus enhancing the tunnel stability. In addition, the model tests results compare fairly well with those from the previously performed three-dimensional finite element analysis. Therefore, a properly calibrated three dimensional model may effectively be used in the study of tunnel face reinforcing technique.

  • PDF

Three-Dimensional Analysis of Self-Heating Effects in SOI Device (SOI 소자 셀프-히팅 효과의 3차원적 해석)

  • 이준하;이흥주
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.29-32
    • /
    • 2004
  • Fully depleted Silicon-on-Insulator (FD-SOI) devices lead to better electrical characteristics than bulk CMOS devices. However, the presence of a thin top silicon layer and a buried SiO2 layer causes self-heating due to the low thermal conductivity of the buried oxide. The electrical characteristics of FDSOI devices strongly depend on the path of heat dissipation. In this paper, we present a new three-dimensional (3-D) analysis technique for the self-heating effect of the finger-type and bar-type transistors. The 3-D analysis results show that the drain current of the finger-type transistor is 14.7% smaller than that of the bar-type transistor due to the 3-D self-heating effect. We have learned that the rate of current degradation increases significantly when the width of a transistor is smaller that a critical value in a finger-type layout. The current degradation fro the 3-D structures of the finger-type and bar-type transistors is investigated and the design issues are also discussed.

  • PDF

Multi-level Building Layout With Dimension Constraints On Departments (형태제약을 가지는 부서의 다층빌딩 설비배치)

  • Chae-Bogk Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.4
    • /
    • pp.42-49
    • /
    • 2003
  • The branch and bound techniques based on cut tree and eigenvector have been Introduced in the literature [1, 2, 3, 6, 9, 12]. These techniques are used as a basis to allocate departments to floors and then to fit departments with unchangeable dimensions into floors. Grouping algorithms to allocate departments to each floor are developed and branch and bound forms the basis of optimizing using the criteria of rectilinear distance. The proposed branch and bound technique, in theory, will provide the optimal solution on two dimensional layout. If the runs are time and/or node limited, the proposed method is a strong heuristic The technique is made further practical by the fact that the solution is constrained such that the rectangular shape dimensions length and width are fixed and a perfect fit is generated if a fit is possible. Computational results obtained by cut tree-based algorithm and eigenvector-based algorithm are shown when the number of floors are two or three and there is an elevator.

The Characteristics and the Type Classification of Contemporary Public Libraries in terms of browsing circuit (현대 공공도서관의 회로경험에 따른 유형분류 및 특성)

  • Lee, Soo-Kyung;Kim, Yong-Seung
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.3
    • /
    • pp.59-67
    • /
    • 2008
  • This study aims to find out the characteristics and the type classification of contemporary public libraries in terms of browsing circuit. In so doing, it is to analyze 21 recently built libraries by using the browsing circuit, the spatial depth and the spatial layout. The study makes use of codes derived from the concept of 'Classification' and 'Frame' suggested by a pedagogist, Basil Bernstein. As a result, it shows that two codes are phased in overseas cases. In other words, one type is a lower depth of space and a high rate of rings with the multi-layer circuits and the three-dimensional circuit of multi-centered. the other type is the higher depth of space and a low rate of rings with the single-layer circuit and the multi-layer circuit of single-centered. In domestic cases, 4 types are shown. The characteristics of layout are seen as a radial shape and the rate of rings is lower than the overseas cases. It can be said that these results are a transitional phenomenon. For browsing circuit, domestic public libraries would be adapted to the three-dimensional circuit of multi-centered, a lower depth of space and a high rate of rings. By instructions of this plan, the real meaning of a public library will be come true.

Development of Urban Competitiveness Evaluation Index on Facility Layout of Multi-dimensional Development of Farilway Facility Site (철도시설부지 입체개발의 시설 배치에 대한 도시경쟁력 평가지표 개발)

  • Kang, Youn Won;Kim, Jong Gu;Shin, Eun Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.587-593
    • /
    • 2024
  • Recently, countries such as Japan and France are actively using three-dimensional development of land to secure available land. In Korea, too, the lack of available land within cities is a major problem, and in particular, the problem of decline due to disconnection due to division due to the railroad is emerging. As a solution to this, interest in three-dimensional development is increasing day by day, but the application or legal effectiveness of the concept is still lacking. Therefore, in this study, assuming that the Gyeongbu Line railway in Busan is underground, we attempted to apply the type of multi-dimensional development appropriate for each region to the land that would be created, and to predict how much it would contribute to urban competitiveness by arranging the necessary facilities for each part. To this end, we have developed an urban competitiveness index that can evaluate the layout of facilities by region, and since the range of the region is different from the existing evaluation indicator, it is judged that the three-dimensional development of the railway facility site can have a positive impact on the competitiveness of the city as a result of the prediction through a subjective survey.

Behavior of Tunnel Face Reinforced with Horizontal Pipes (수평보강재로 보강된 터널 막장의 거동)

  • 유충식;신현강
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.185-192
    • /
    • 1999
  • This paper presents the results of a parametric study on the behavior of tunnel face reinforced with horizontal pipes. A three-dimensional finite element model was adopted in this study to capture the three-dimensional nature of tunnel face behavior under various boundary conditions. A parametric study was peformed on a wide range of boundary conditions with emphasis on the effect of reinforcing layouts on the deformation behavior of tunnel face. The results of analysis such as tunnel face deformation behavior under various conditions were thoroughly analyzed, and a database for the behavior of tunnel face under different reinforcing conditions was established for future development of a semi-empirical design/analysis method for the tunnel face reinforcing technique. The results indicated that there exits an optimum reinforcing layout for a given tunnel condition, which must be selected with due consideration of tunnel geometry and ground condition.

  • PDF