• 제목/요약/키워드: Three-dimensional effects

검색결과 1,747건 처리시간 0.027초

3D QSAR Studies on New Piperazine Derivatives with Antihistamine and Antibradykinin Effects

  • Parkchoo, Hea-Young;Chung, Bum-Jun
    • Archives of Pharmacal Research
    • /
    • 제23권4호
    • /
    • pp.324-328
    • /
    • 2000
  • Three dimensional QSAR studies for antihistamine and antibradykinin effects of new piperazine derivatives were conducted using the comparative molecular field analysis. Electrostatic and steric factors, but not hydrophobic factor, of the synthesized compounds were correlated with the antagonistic effect.

  • PDF

수제의 잠김 정도에 따른 3차원 흐름 구조 변화에 관한 실험 연구 (Flume experiments for studying the effects of submergence on three-dimensional flow structure around a spur dike)

  • 이지용;전정숙;김영규;강석구
    • 한국수자원학회논문집
    • /
    • 제51권2호
    • /
    • pp.109-120
    • /
    • 2018
  • 본 연구에서는 직선 개수로 내 설치된 50% 잠긴 수제 모형 주위에서 발생하는 3차원 흐름 현상 연구를 위한 수리모형실험이 수행되었다. 수리모형실험은 두 가지 Froude 수($Fr{\simeq}0.10$$Fr{\simeq}0.18$)에서 수행되었다. 그리고 본 실험 결과를 잠기지 않은 수제 실험결과(Jeon and Kang, 2016)와 비교하여 수제의 잠김 흐름 발생에 따른 흐름 변화를 관찰하였다. 시간평균유속과 난류에너지를 구하기 위해 초음파 유속계를 이용해 3차원 실시간 유속을 측정하였고 시간평균 수위를 측정하기 위해 초음파 거리 센서를 이용해 실시간 수위를 측정하였다. 수제의 잠김 흐름 발생은 3차원 유속분포에 큰 영향을 미치는 것으로 나타났다.

사면보강 뿌리말뚝공법의 준3차원적 안정해석기법 (Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement)

  • 김홍택;강인규;박사원
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

도시의 3차원 물리적 환경변수와 지표온도의 관계 분석 (Analysis of the Relationship between Three-Dimensional Built Environment and Urban Surface Temperature)

  • ;이수기;한재원
    • 국토계획
    • /
    • 제54권2호
    • /
    • pp.93-108
    • /
    • 2019
  • This study examines the relationship between three-dimensional urban built environment and urban surface temperature using LANDSAT 8 satellite image data in Seoul city. The image was divided into 600m×600m grid units as an unit of analysis. Due to the high level of spatial dependency in surface temperature, this study uses spatial statistics to take into account spatial auto-correlation. The spatial error model shows the best goodness of fit. The analysis results show that the three-dimensional built environment and transport environment as well as natural environment have statistically significant associations with surface temperature. First, natural environment variables such as green space, streams and river, and average elevation show statistically significant negative association with surface temperature. Second, the building area shows a positive association with surface temperature. In addition, while sky view factor (SVF) has a positive association with surface temperature, surface roughness (SR) shows a negative association with it. Third, transportation related variables such as road density, railway density, and traffic volume show positive associations with surface temperature. Moreover, this study finds that SVF and SR have different effects on surface temperature in regard to the levels of total floor areas in built environment. The results indicate that interactions between floor area ratio (FAR) and three-dimensional built environmental variables such as SVF and SR should be considered to reduce urban surface temperature.

Airway Reactivity to Bronchoconstrictor and Bronchodilator: Assessment Using Thin-Section and Volumetric Three-Dimensional CT

  • Boo-Kyung Han;Jung-Gi Im;Hak Soo Kim;Jin Mo Koo;Hong Dae Kim;Kyung Mo Yeon
    • Korean Journal of Radiology
    • /
    • 제1권3호
    • /
    • pp.127-134
    • /
    • 2000
  • Objective: To determine the extent to which thin-section and volumetric three-dimensional CT can depict airway reactivity to bronchostimulator, and to assess the effect of different airway sizes on the degree of reactivity. Materials and Methods: In eight dogs, thin-section CT scans were obtained before and after the administration of methacholine and ventolin. Cross-sectional areas of bronchi at multiple levels, as shown by axial CT, proximal airway volume as revealed by three-dimensional imaging, and peak airway pressure were measured. The significance of airway change induced by methacholine and ventolin, expressed by percentage changes in cross-sectional area, proximal airway volume, and peak airway pressure was statistically evaluated, as was correlation between the degree of airway reactivity and the area of airways. Results: Cross-sectional areas of the bronchi decreased significantly after the administration of methacholine, and scans obtained after a delay of 5 minutes showed that normalization was insufficient. Ventolin induced a significant increase in cross-sectional areas and an increase in proximal airway volume, while the effect of methacholine on the latter was the opposite. Peak airway pressure increased after the administration of methacholine, and after a 5-minute delay its level was near that of the control state. Ventolin, however, induced no significant decrease. The degree of airway reactivity did not correlate with airway size. Conclusion: Thin-section and volumetric spiral CT with three-dimensional reconstruction can demonstrate airway reactivity to bronchostimulator. The degree of reactivity did not correlate with airway size.

  • PDF

Long-term behavior of segmentally-erected prestressed concrete box-girder bridges

  • Hedjazi, S.;Rahai, A.;Sennah, K.
    • Structural Engineering and Mechanics
    • /
    • 제20권6호
    • /
    • pp.673-693
    • /
    • 2005
  • A general step-by-step simulation for the time-dependent analysis of segmentally-erected prestressed concrete box-girder bridges is presented. A three dimensional finite-element model for the balanced-cantilever construction of segmental bridges, including effects of the load history, material nonlinearity, creep, shrinkage, and aging of concrete and the relaxation of prestressing steel was developed using ABAQUS software. The models included three-dimensional shell elements to model the box-girder walls and Rebar elements representing the prestressing tendons. The step-by-step procedure allows simulating the construction stages, effects of time-dependent deformations of materials and changes in the structural system of the bridges. The structural responses during construction and throughout the service life were traced. A comparison of the developed computer simulation with available experimental results was conducted and good agreement was found. Deflection of the bridge deck, changes in stresses and strains and the redistribution of internal forces were calculated for different examples of bridges, built by the balanced-cantilever method, over thirty-year duration. Significant time-dependent effects on the bridge deflections and redistribution of internal forces and stresses were observed. The ultimate load carrying capacities of the bridges and the behavior before collapse were also determined. It was observed that the ultimate load carrying capacity of such bridges decreases with time as a result of time-dependent effects.

Experimental and Computational Studies on Flow Behavior Around Counter Rotating Blades in a Double-Spindle Deck

  • Chon, Woo-Chong;Amano, Ryoichi S.
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1401-1417
    • /
    • 2004
  • Experimental and computational studies were performed to determine the effects of different blade designs on a flow pattern inside a double-spindle counter rotating mower deck. In the experimental study, two different blade models were tested by measuring air velocities using a forward-scatter LDV system. The velocity measurements were taken at several different azimuth and axial sections inside the deck. The measured velocity distributions clarified the air flow pattern caused by the rotating blades and demonstrated the effects of deck and blade designs. A high-speed video camera and a sound level meter were used for flow visualization and noise level measurement. In the computational works, two-dimensional blade shapes at several arbitrary radial sections have been selected for flow computations around the blade model. For three-dimensional computation applied a non-inertia coordinate system, a flow field around the entire three-dimensional blade shape is used to evaluate flow patterns in order to take radial flow interactions into account. The computational results were compared with the experimental results.

돌출 열원을 갖는 3차원 밀폐 공간내에서의 자연대류-복사 복합 열전달에 대한 실험적 및 수치적 연구 (An experimental and numerical study on natural convection-radiation conjugate heat transfer in a three-dimensional enclosure having a protruding heat source)

  • 백창인;이관수;김우승
    • 대한기계학회논문집B
    • /
    • 제20권10호
    • /
    • pp.3344-3354
    • /
    • 1996
  • An experimental and numerical study on the three-dimensional natural convection-radiation conjugate heat transfer in the enclosure with heat generating chip has been performed. A 3-dimensional simulation model is developed by considering heat transfer phenomena by conduction-convection and radiation. Radiative transfer was analyzed with the discrete ordinates method. Experiments are conducted in order to validate the numerical model. Comparisons with the experimental data show that good agreement is obtained when the radiation effect is considered. The effects of the thermal conductivity of the substrate and power level on heat transfer are investigated. It is shown that radiation is the dominant heat transfer mode and the conductivity of the substrate has important effects on the heat transfer in the enclosure.

3D 패키징을 위한 Scallop-free TSV와 Cu Pillar 및 하이브리드 본딩 (Scallop-free TSV, Copper Pillar and Hybrid Bonding for 3D Packaging)

  • 장예진;정재필
    • 마이크로전자및패키징학회지
    • /
    • 제29권4호
    • /
    • pp.1-8
    • /
    • 2022
  • TSV 기술을 포함한 고밀도, 고집적 패키징 기술은 IoT, 6G/5G 통신, HPC (high-performance computing)등 여러 분야에서 중요한 기술로 여겨지고 있다. 2차원에서 고집적화를 달성하는 것은 물리적 한계에 도달하게 되었으며, 따라서 3D 패키징 기술을 위하여 다양한 연구들이 진행되고 있다. 본 고에서는 scallop의 형성 원인과 영향, 매끈한 측벽을 만들기 위한 scallop-free 에칭 기술, TSV 표면의 Cu bonding에 대해서 자세히 조사하였다. 이러한 기술들은 고품질 TSV 형성 및 3D 패키징 기술에 영향을 줄 것으로 예상한다.

유한 요소법(FEM)을 이용한 압전 박막 공진기(FBAR)의 공진 모드 해석 (Finite Element Method Analysis of Film Bulk Acoustic Resonator)

  • 송영민;정재호;이용현;이정희;최현철
    • 한국전자파학회:학술대회논문집
    • /
    • 한국전자파학회 2000년도 종합학술발표회 논문집 Vol.10 No.1
    • /
    • pp.95-98
    • /
    • 2000
  • Film bulk acoustic resonator used in microwave region can be analyzed by one-dimension Mason's model and one-dimensional numerical method, but it had several constraints to analyze effects of area variation, electrode-area variation, electrode-shape variation and spurious characteristics. To overcome these constraints film bulk acoustic resonator must be analysed by three dimensional numerical method. So, in this paper three dimensional finite element method was used to analyze several moles of resonance and was compared with the one dimension Mason's model analysis and analytic solution.

  • PDF