• 제목/요약/키워드: Three-dimensional Vibration Analysis

검색결과 297건 처리시간 0.031초

Free vibration analysis of moderately-thick and thick toroidal shells

  • Wang, X.H.;Redekop, D.
    • Structural Engineering and Mechanics
    • /
    • 제39권4호
    • /
    • pp.449-463
    • /
    • 2011
  • A free vibration analysis is made of a moderately-thick toroidal shell based on a shear deformation (Timoshenko-Mindlin) shell theory. This work represents an extension of earlier work by the authors which was based on a thin (Kirchoff-Love) shell theory. The analysis uses a modal approach in the circumferential direction, and numerical results are found using the differential quadrature method (DQM). The analysis is first developed for a shell of revolution of arbitrary meridian, and then specialized to a complete circular toroidal shell. A second analysis, based on the three-dimensional theory of elasticity, is presented to cover thick shells. The shear deformation theory is validated by comparing calculated results with previously published results for fifteen cases, found using thin shell theory, moderately-thick shell theory, and the theory of elasticity. Consistent agreement is observed in the comparison of different results. New frequency results are then given for moderately-thick and thick toroidal shells, considered to be completely free. The results indicate the usefulness of the shear deformation theory in determining natural frequencies for toroidal shells.

강합성 데크 트러스 보도교의 자유진동해석 및 상시진동실험에 관한 연구 (Free and Ambient Vibration of Steel-Deck Truss Bridge)

  • 정성엽;오순택
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권4호
    • /
    • pp.60-68
    • /
    • 2012
  • 본 연구에서는 미국 뉴욕주 로체스터시 소재 강합성 데크 트러스 보도교를 대상으로 사용성을 평가하기 위한 상시진동 실험(ambient vibration test)을 수행하였고 이를 해석적 방법에 의한 결과와 비교하였다. 교량전체에 대한 상시진동실험은 수치모델 작성 시 도입되는 여러 가정들에 대한 타당성을 평가하는데 있어서 유용한 방법이며, 교량의 고유진동수나 모드형상과 같이 구조 동력학에서 중요한 구조적인 변수를 결정하는데 있어 중요한 역할을 한다. 본 연구에서는 교량의 수직방향 및 수평방향 진동 특성과 변위를 측정하기 위하여 실제 교량에서 보행자에 의해 발생하는 진동을 입력하중으로 사용하였다. 교량 구조물에 대한 모델링을 위하여 3차원 유한 요소법을 사용하여 해석을 수행하였으며, 이를 통하여 현장실험 결과와의 유효성을 입증하였다.

교량구조물의 헬스모니터 링을 위한 진동계측 (Instrumentation and Structural Health Monitoring of Bridges)

  • 김두기;김종인;김두훈
    • 한국소음진동공학회논문집
    • /
    • 제11권5호
    • /
    • pp.108-122
    • /
    • 2001
  • As bridge design is advancing toward the performance-based design. it becomes increasingly important to monitor and re-evaluate the long-term structural performance of bridges. Such information is essential in developing performance criteria for design. In this research. sensor systems for long-term structural performance monitoring have been installed on two highway bridges. Pre1iminary vibration measurement and data analysis have been performed on these instrumented bridges. On one bridge, ambient vibration data have been collected. based on which natural frequencies and mode shapes have been extracted using various methods and compared with those obtained by the preliminary finite element analysis. On the other bridge, braking and bumping vibration tests have been carried out using a water truck In addition to ambient vibration tests. Natural frequencies and mode shapes have been derived and the results by the breaking and bumping vibration tests have been compared. For the development of a three dimensional baseline finite element model, the new methodology using a neural network is proposed. The proposed one have been verified and applied to develop the baseline model of the bridge.

  • PDF

VIBRATION SIGNAL ANALYSIS OF MAIN COOLANT PUMP FLYWHEEL BASED ON HILBERT-HUANG TRANSFORM

  • LIU, MEIRU;XIA, HONG;SUN, LIN;LI, BIN;YANG, YANG
    • Nuclear Engineering and Technology
    • /
    • 제47권2호
    • /
    • pp.219-225
    • /
    • 2015
  • In this paper, a three-dimensional model for the dynamic analysis of a flywheel based on the finite element method is presented. The static structure analysis for the model provides stress and strain distribution cloud charts. The modal analysis provides the basis of dynamic analysis due to its ability to obtain the natural frequencies and the vibration-made vectors of the first 10 orders. The results show the main faults are attrition and cracks, while also indicating the locations and patterns of faults. The harmonic response simulation was performed to gain the vibration response of the flywheel under operation. In this paper, we present a Hilbert-Huang transform (HHT) algorithm for flywheel vibration analysis. The simulation indicated that the proposed flywheel vibration signal analysis method performs well, which means that the method can lay the foundation for the detection and diagnosis in a reactor main coolant pump.

다층 건축구조물의 효율적인 연직진동해석 (Efficient Analysis for Vertical Vibration of Multistory Buildings)

  • 이동근;안상경
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1999년도 봄 학술발표회 논문집
    • /
    • pp.129-136
    • /
    • 1999
  • This research proposes an effective analytical methodology for vertical vibration of three dimensional frame structures including slabs. The consideration of slabs, although allows more precise results, requires large amount of computer time and memory space due to the use of plane stress elements. In consideration of these problems, a method to properly manage nodal points and degrees of freedom is proposed based on matrix condensation technique. Also studied is the use of substructure method to obtain fast and reliable results with simple input data when they are applied to conventional building structures.

  • PDF

대형 스플리터 소음기 성능에 대한 3차원 수치해석적 연구 (Three-dimensional Numerical Study on Acoustic Performance of Large Splitter Silencers)

  • 백성현;이창헌;권대훈;이일재
    • 한국소음진동공학회논문집
    • /
    • 제27권2호
    • /
    • pp.139-147
    • /
    • 2017
  • Acoustic performance of splitter silencers was investigated by using 3-dimensional commercial software and experiments. Flow resistivity of sound absorbing material was indirectly estimated by using an impedance tube setup and a curve fitting method. In addition the acoustic impedance of perforated plate was determined by an empirical formulation. Such properties have been used as input parameters in the commercial software. The prediction for a splitter silencer with 1000 mm length was compared with the experimental result. The numerical method is then applied to identify the effects of number of splitters, length of splitters, absorptive material density, and porosity of a perforated plate on the performance of the splitter silencers. As the number and length of splitter increases, the acoustic performance significantly increases. Although the increase of density of absorptive material also increase the acoustic performance, a change in the density over a certain level hardly affect it. The increase of porosity will enhance the performance especially at higher frequencies.

산화제 터보펌프의 구조 강도 및 진동 안전성에 관한 연구 (Investigation on the Strength and Vibration Safety of the Oxidizer Turbopump)

  • 전성민;김진한;양수석;이대성
    • 한국유체기계학회 논문집
    • /
    • 제5권3호
    • /
    • pp.25-32
    • /
    • 2002
  • Structural and dynamic analyses of inducer and impeller for an oxidizer turbopump are peformed to investigate the safety level of strength and vibration at a design point. Due to high rotational speed of turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Hydrodynamic pressure is also considered as an external force applied to inducer and impeller blades. A three-dimensional Finite Element Method (FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear trim solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. According to the results of numerical analysis, the safety margins of strength and vibration resonances are sufficient enough for safe operation within the requited life cycle.

산화제 터보펌프의 구조 강도 및 진동 안전성에 관한 연구 (Investigation on the Strength and Vibration Safety of the Oxidizer Turbopump)

  • 전성민;김진한;양수석;이대성
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.271-278
    • /
    • 2001
  • Structural and dynamic analyses of inducer and impeller for a oxidizer turbopump are peformed to investigate the safety level of strength and vibration at design point. Due to high rotational speed of turbopump, effects of centrifugal forces are carefully considered in the structural analysis. Hydrodynamic pressure is also considered as an external force applied to inducer and impeller blades. A three dimensional finite element method(FEM) is used for linear and nonlinear structural analyses with modified Newton-Raphson iteration method. After the nonlinear trim solution is obtained from the structural analysis, dynamic characteristics are obtained as a function of rotational speed from the linearized eigenvalue analysis at an equilibrium position. According to the results of numerical analysis, the safety margins of strength and vibration resonances m sufficient enough to be operated safely within the required life cycle.

  • PDF

Stability and vibration analysis of composite plates using spline finite strips with higher-order shear deformation

  • Akhras, G.;Li, W.
    • Structural Engineering and Mechanics
    • /
    • 제27권1호
    • /
    • pp.1-16
    • /
    • 2007
  • In the present study, a spline finite strip with higher-order shear deformation is formulated for the stability and free vibration analysis of composite plates. The analysis is conducted based on Reddy's third-order shear deformation theory, Touratier's "Sine" model, Afaq's exponential model and Cho's higher-order zigzag laminate theory. Consequently, the shear correction coefficients are not required in the analysis, and an improved accuracy for thick laminates is achieved. The numerical results, based on different shear deformation theories, are presented in comparison with the three-dimensional elasticity solutions. The effects of length-to-thickness ratio, fibre orientation, and boundary conditions on the critical buckling loads and natural frequencies are investigated through numerical examples.

여러 Wing들로 구성된 3차원 구조물의 효율적인 해석모델 (Efficient Analysis for a Three-Dimensional Multistory Structure with Wings)

  • 문성권;이동근
    • 대한토목학회논문집
    • /
    • 제14권3호
    • /
    • pp.429-438
    • /
    • 1994
  • 3차원 유한요소 모델을 사용하여 여러 wing들로 구성된 3차원 다중 구조물의 해석을 수행할 경우에는 입력자료 작성시 번거로움과 긴 해석시간 및 큰 용량의 컴퓨터가 필요하게 된다. 본 연구에서는 이런 문제점을 효율적으로 극복할 수 있는 여러 wing들로 구성된 3차원 구조물에 대한 해석모델들을 제안하였으며 이들 해석모델에는 3차원 다중 구조물에서 계산의 간편성 때문에 통상 무시되어 온 바닥슬라브의 면내변형이 고려되어져 있다. 본 연구에서 제안하는 해석모델에서는 여러 wing들로 구성된 3차원 구조물을 하나의 구조물로 취급하는 종래의 방법 대신에 각 wing 구조물들과 이들 wing 구조물을 서로 연결시켜주는 연결부로 이상화하기 때문에 다양한 형태(Y. U, H 등)의 구조물에도 쉽게 적용할 수 있다. 제안된 해석모델의 정확성은 두가지 구조방식의 예제 구조물에 대하여 3차원 유한 요소 모델과 제안된 해석모델로부터 구한 해석결과(구조물의 고유 진동주기, 모드형상, 임의 절점에서의 변위에 대한 시간이력)의 비교로부터 검증되었으며 그 결과 제안된 해석모델은 여러 wing들로 구성된 3차원 구조물에 대한 근사적인 모델로 적합함을 알 수 있었다.

  • PDF