• 제목/요약/키워드: Three electrode structure

검색결과 115건 처리시간 0.029초

Thermoelectric properties of individual PbTe nanowires grown by a vapor transport method

  • Lee, Seung-Hyun;Jang, So-Young;Lee, Jun-Min;Roh, Jong-Wook;Park, Jeung-Hee;Lee, Woo-Young
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 춘계학술대회 논문집
    • /
    • pp.7-7
    • /
    • 2009
  • Lead telluride (PbTe) is a very promising thermoelectric material due to its narrow band gap (0.31 eV at 300 K), face-centered cubic structure and large average excitonic Bohr radius (46 nm) allowing for strong quantum confinement within a large range of size. In this work, we present the thermoelectric properties of individual single-crystalline PbTe nanowires grown by a vapor transport method. A combination of electron beam lithography and a lift-off process was utilized to fabricate inner micron-scaled Cr (5 nm)/Au (130 nm) electrodes of Rn (resistance of a near electrode), Rf (resistance of a far electrode) and a microheater connecting a PbTe nanowire on the grid of points. A plasma etching system was used to remove an oxide layer from the outer surface of the nanowires before the deposition of inner electrodes. The carrier concentration of the nanowire was estimated to be as high as $3.5{\times}10^{19}\;cm^{-3}$. The Seebeck coefficient of an individual PbTe nanowire with a radius of 68 nm was measured to be $S=-72{\mu}V/K$ at room temperature, which is about three times that of bulk PbTe at the same carrier concentration. Our results suggest that PbTe nanowires can be used for high-efficiency thermoelectric devices.

  • PDF

Analysis of Stacked and Multi-layer Graphene fot the Fabrication of LEDs

  • 김기영;민정홍;장소영;이준엽;박문도;김승환;전성란;송영호;이동선
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.433.1-433.1
    • /
    • 2014
  • The research of graphene, a monolayer of carbon atoms with honeycomb lattice structure, has explosively increased after appeared in 2004. As a result, its high transmittance, mobility, thermal conductivity, and outstanding mechanical and chemical stability have been proved. Especially, many researches were executed about the field of transparent electrode highlighting material of substituting the indium tin oxide (ITO). In addition, qualitative and quantitative improvements have been achieved due to many synthesis methods were discovered. Among them, mostly used method is chemical vapour deposition of graphene grown on copper or nickel. The transmittance, mobility, sheet resistance, and other many properties are completely changed according to these two types of synthesis method of graphene. In this research, considering the difference of characteristics as the synthesis method of graphene, what types of graphene should be used and how to use it were studied. The stacked graphene harvested on copper and multi-layer graphene harvested on nickel were compared and analyzed, as a result, the transmittance of 90% and the sheet resistance of $70{\Omega}{\square}$ was showed even though stacked graphene layers were 4 layers. The reason that could bring these results is lowered sheet resistance due to stacked monolayer graphenes. Moreover, light output power of the three stacked graphene spreading layer shows the highest value, but light-emitting diode with multi-layer graphene died out from 12mA due to also its high sheet resistance. Therefore, we need to clarify about what types of graphene and how to use the graphene in use.

  • PDF

Preparation and Characterization of Organic-inorganic Hybrid Composite Film with Plate-shaped Alumina by Electrophoretic Deposition as a Function of Aging Time of Sol-Gel Binder

  • Kim, Doo Hwan;Park, Hee Jeong;Choi, Jinsub;Lim, Hyung Mi
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.366-373
    • /
    • 2015
  • Sol-gel binder was prepared by hydrolysis and condensation reaction using boehmite sol and methyltrimethoxysilane as a function of aging-time. The coating slurry was composed of a plate-shape alumina in the sol-gel binder for the EPD process, in which particles dispersed in the slurry were deposited on the electrode under an electric field due to the surface charge. We studied the effects of three parameters: the content of boehmite, the aging time, and the applied voltage, on the physical, thermal, and electrical properties of the hybrid composite films by EPD. The amount of boehmite was 10 ~ 20 wt% and the aging time was 0.5 ~ 72, with a fixed amount of plate-shape alumina of 10 wt%. The condition of applied voltage was 5 ~ 30 V with a distance of 2 cm between the electrode during the EPD process. We confirmed that a structure of hybrid composite films of well-ordered plate alumina was deposited on the substrate when the film was prepared using a sol-gel binder composed of 15 wt% boehmite with 1 hr aging time and EPD at 10 V. The process shows a weight loss of 7% at $500^{\circ}C$ in TGA and a breakdown voltage of 8 kV at $87{\mu}m$.

전기 이중층 커패시터를 위한 다공성 탄소나노섬유의 메조 기공 제어 효과 (Mesoporous Control Effect of Porous Carbon Nanofibers for Electrical Double-Layer Capacitors)

  • 조현기;신동요;안효진
    • 한국재료학회지
    • /
    • 제29권3호
    • /
    • pp.167-174
    • /
    • 2019
  • To improve the performance of carbon nanofibers as electrode material in electrical double-layer capacitors (EDLCs), we prepare three types of samples with different pore control by electrospinning. The speciments display different surface structures, melting behavior, and electrochemical performance according to the process. Carbon nanofibers with two complex treatment processes show improved performance over the other samples. The mesoporous carbon nanofibers (sample C), which have the optimal conditions, have a high sepecific surface area of $696m^2g^{-1}$, a high average pore diameter of 6.28 nm, and a high mesopore volume ratio of 87.1%. In addition, the electrochemical properties have a high specific capacitance of $110.1F\;g^{-1}$ at a current density of $0.1A\;g^{-1}$ and an excellent cycling stability of 84.8% after 3,000 cycles at a current density of $0.1A\;g^{-1}$. Thus, we explain the improved electrochemical performance by the higher reaction area due to an increased surface area and a faster diffusion path due to the increased volume fraction of the mesopores. Consequently, the mesoporous carbon nanofibers are demonstrated to be a very promising material for use as electrode materials of high-performance EDLCs.

Effect of $ZnCl_2$ on Formation of Carbonized Phenol Resin Anode

  • Kim Han-Joo;Hong Ji-sook;Son Won-Ken;Park Soo-Gil;Oyama Noboru
    • 전기화학회지
    • /
    • 제3권2호
    • /
    • pp.85-89
    • /
    • 2000
  • Lithium ion Battery(LIB)의 음극 활물질로써 리튬을 대체하기 위한 노력으로 phenol resin을 탄화시킨 탄소재료를 사용하였다. Phenol resin을 소성하면 축합반응을 일으키면서 탄화되어 무정형 탄소가 된다. 무정형 탄소는 층간거리가 넓어 리튬의 삽입과 탈리가 용이하지만 탄소간의 결합력이 약하여 구조적 붕괴가 일어난다. 이러한 문제를 해결하기 위해 세공형성제로서 $ZnCl_2$를 사용하였다. $ZnCl_2$는 생성된 물질에서 3차원적 망상구조로 성장하는 개방세공을 형성하는 세공형성제로서 뿐만 아니라, 벌크 첨가제가 도핑된 느슨한 구조를 형성하는 미세세공 형성제로서 작용하였다. SEM을 통해서 구조적 차이를 알 수 있었으며, XRD분석으로 층간의 거리를 알 수 있었다. CV측정을 통해 두 가지 샘플에 대한 산화와 환원 반응의 차이를 알아보았다.

재활.물리치료서비스 수가항목의 인적 투입요소 구조분석 연구 (An Analytical Study on the Structure of Personal Input Factors of Fees for Rehabilitative and Physical Therapeutic Services)

  • 임정도
    • 대한물리치료과학회지
    • /
    • 제3권2호
    • /
    • pp.1065-1077
    • /
    • 1996
  • Fees for medical insurance services in Korea has not being been set based on service costing. Recently in the USA, fees for physican services are determined by developing and applying Resoure Based Relative Value Scales (RBRVS). This study attempts to develop relative value scales for personal factors of rehabilitative and physical therapeutic services. The personal factors were classified into four categories as having been done in the USA;service time, treatment technology and physical efforts, mental efforts and judgement, and stress. Input factors were measured using Magnitude Estimation Method (MEM), and relative value units were calculated for each of twenty eight rehabilitative and physical therapeutic services. Results show that service time surveyed differs from that provided in the public fee schedules in 24 services; the three personal factors but the service time are highly correlated; the physical therapists hold treatment technology and physical efforts to be the most important factor in setting the for services; and that relative values developed for noninsurance services such as Silver Spike Electrode (SSP) and Proprioceptive Neuromuscular Facilitation (PNF) are higher than those of similar insurance services. The policy implications and measures for improvement for the above findings were suggested respectively.

  • PDF

전기화학 증착법에 의해 합성된 폴리옥소메탈레이트/폴리피롤/탄소천 전극의 전기화학적 특성 (Electrochemical Characteristics of Polyoxometalate/Polypyrrole/Carbon Cloth Electrode Synthesized by Electrochemical Deposition Method)

  • 윤조희;최봉길
    • 공업화학
    • /
    • 제27권4호
    • /
    • pp.421-426
    • /
    • 2016
  • 본 연구에서는 폴리옥소메탈레이트(polyoxometalate, POM)가 도핑된 폴리피롤(polypyrrole, Ppy)을 3차원 구조의 탄소천(carbon cloth, CC) 표면 위에 전기화학적 증착법을 이용하여 합성하고 이의 의사커패시터 특성을 순환전압전류법과 정전류 충전-방전법을 사용하여 분석하였다. POM-Ppy의 코팅은 전기화학적 증착 시간에 따라서 얇은 conformal형태의 코팅으로 조절되었다. 제조된 POM-Ppy/CC의 재료 특성은 전자주사현미경과 X-선 분광분석을 사용하여 분석하였다. POM-Ppy/CC의 3차원 나노복합체 구조는 높은 비정전용량($561mF/cm^2$), 고속 충방전(85% 용량 유지율) 및 장수명 특성(97% 용량 유지율)을 나타내었다.

Surface Finishing Technique for Micro 3-Dimensional Structures Using ER Fluid

  • Kim, Wook-Bae;Lee, Sang-Jo;Kim, Yong-Jun;Lee, Eung-Sug
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제5권1호
    • /
    • pp.47-54
    • /
    • 2004
  • In this study, the electrorheological (ER) fluid was used as finishing agent. Since the apparent viscosity can be controlled by an electric field, the ER fluid can be one of efficient materials in finishing processes. To finish small 3-dimensional structures such as the aspherical surface in optical elements, the possible arrangement of a tool, part and auxiliary electrode was described. We examined the influence of the addition of a few abrasive particles on the performance of the ER fluid by measuring yield stress and observed the behavior of abrasive particles in the ER fluid by a CCD camera, which had been also theoretically predicted from the electromechanical principles of particles. On the basis of the above results, the steady flow analysis around the rotating micro tool was performed considering the non-uniform electric field. Finally, borosilicate glass was finished using the mixture of the ER fluid and abrasive particles and material removal with field strength and surface roughness were investigated.

Organic Thin-Film Transistors Fabricated on Flexible Substrate by Using Nanotransfer Molding

  • Hwang, Jae-Kwon;Dang, Jeong-Mi;Sung, Myung-Mo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.287-287
    • /
    • 2010
  • We report a new direct patterning method, called liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. This procedure can be adopted for automated direct printing machines that generate patterns of functional materials with a wide range of feature sizes on diverse substrates. Arrays of TIPS-PEN TFTs were fabricated on 4" polyethersulfone (PES) substrates by LB-nTM using PDMS molds. An inverted staggered structure was employed in the TFT device fabrication. A 150 nm-thick indium-tin oxide (ITO) gate electrode and a 200 nm-thick SiO2dielectric layer were formed on a PES substrate by sputter deposition. An array of TIPS-PEN patterns (thickness: 60 nm) as active channel layers was fabricated on the substrate by LB-nTM. The nominal channel length of the TIPS-PEN TFT was 10 mm, while the channel width was 135 mm. Finally, the source and drain electrodes of 200 nm-thick Ag were defined on the substrate by LB-nTM. The TIPS-PEN TFTs can endure strenuous bending and are also transparent in the visible range, and therefore potentially useful for flexible and invisible electronics.

  • PDF

Single Crystalline ${\beta}$-Na0.33V2O5 Nanowires Based Supercapacitor

  • Trang, Nguyen Thi Hong;Shakir, Imran;Kang, Dae-Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.587-587
    • /
    • 2012
  • Supercapacitors, which can deliver significant energy with high power density, have attracted a lot of attention due to their potential application in energy storage. Among various oxide materials, sodium vanadate has been recognized as one of the most promising electrode materials because of high electrical conductivity. In addition, larger layer spacing of ${\beta}$-Na0.33V2O5 compared to V2O5 makes easier Li+ insertion. Moreover, ${\beta}$-Na0.33V2O5 has a tunnel like structure along b axis with 3 kinds of V site allowing it to enhance the ion intercalation by introducing three different intercalation sites along the tunnel. The tunnel can act as a fast diffusion path for ion diffusion, which can improve the overall charge storage kinetics. In this study, high quality single crystalline sodium vanadate (${\beta}$-Na0.33V2O5) nanowires were grown directly on Pt coated $SiO_2$ substrate by a facile chemical solution deposition method without employing catalyst, surfactant or carrier gas. The results show that great enhancement in capacitance was observed compared with previous reports.

  • PDF