• 제목/요약/키워드: Three dimensional-finite element analysis

검색결과 1,692건 처리시간 0.03초

2차원 및 3차원 연계해석을 통한 다단 자동냉간단조 공정의 강소성 유한요소해석 (Rigid-Plastic Finite Element Analysis of Multi-Stage Automatic Cold Forging Processes by Combined Analyses of Two-Dimension and Three-Dimensional Approaches)

  • 이민철;전만수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.195-200
    • /
    • 2007
  • We analyzed a sequence of multi-stage automatic cold forging processes composed of four axisymmetric processes followed by a non-axisymmetric process using rigid-plastic finite element based forging simulators. The forging sequence selected for an example involves a piercing process and a heading process accompanying folding or overlapping, which all make it difficult to simulate the processes. To reduce computational time and to enhance the solution reliability, only the non-symmetric process was analyzed by the three-dimensional approach after the axisymmetric processes were analyzed by the two-dimensional approach. It has been emphsized that this capability is very helpful in simulating the multi-stage automatic forging processes which are next to axisymmetric.

  • PDF

강체 단부 보요소의 개발 및 브라켓이 있는 골조 구조의 3차원 해석 단순화를 위한 적용 (Development of a Rigid-ended Beam Element and Its Application to Simplify 3-Dimensional Analysis of Bracketed Frame Structures)

  • 서승일;임성준
    • 대한조선학회논문집
    • /
    • 제34권3호
    • /
    • pp.76-84
    • /
    • 1997
  • 초기설계 단계에서는 선체구조 강도의 신속한 해석을 위해 보요소를 사용한 유한요소 해석이 일반적으로 사용된다. 선체구조를 보요소로 모델링할 때, 브라켓은 해석의 간편화를 위해 강체 요소로 표시된다. 강체 단부의 길이(=span point)는 세 가지 관점 - 굽힘, 전단, 축 변형 - 에 따라서 결정된다. 본 논문에서는, 새로운 2차원 보요소를 개발하였고, 2차원 해석으로 3차원 해석을 대신할 수 있는 방법을 제안하였다. '강체 단부 보요소' 라고 명명된 이 보요소는 한 요소 내에서 세 종류의 span point 효과를 모두 고려할 수 있는데, 이것은 보통의 보요소에서는 불가능한 것이다. 강체 단부 보요소를 사용한 Portal frame 해석결과는 membrane 해석결과와 잘 일치한다. 그리고, 영향계수를 사용한 2단계 해석을 포함하는 준 3차원 해석결과는 좋은 정확도를 보이고 있다. 강체 단부 보요소와 준 3차원 해석방법을 사용한 구조해석은 브라켓에 해당하는 요소가 필요치 않고, 3차원 해석을 단순화시킬 수 있었기 때문에 좋은 계산효율을 가진 것으로 판명되었다.

  • PDF

중대형 플라스틱 제품 성형공정 모사를 위한 3 차원 진공 열성형 해석 기법 (Methodology of Three-Dimensional Thermoforming Analysis to Simulate Forming Process of Medium and Large-Sized Plastic Parts)

  • 이호진;안동규
    • 한국정밀공학회지
    • /
    • 제32권11호
    • /
    • pp.953-960
    • /
    • 2015
  • The thermoforming process has been widely used to manufacture medium- and large-sized plastic parts because of the relatively low cost and high productivity, as compared with other plastic forming processes. One of current salient issues of thermoforming industries is the reduction of trial and error during the production of the thermoformed product. Hence, there is a significant increasing interest in the thermoforming analysis by the thermoforming industries. The goal of this paper is to investigate a methodology of the three-dimensional thermoforming analysis for medium- and large-sized plastic parts. There is a discussion about methodologies of thermoforming analysis, as well as material modeling, and three-dimensional finite element analysis. Furthermore, there is an examination, through case studies, about the applicability of the proposed methodology concerning the thermoforming analysis.

Experimental analysis on FEM definition of backfill-rectangular tank-fluid system

  • Cakir, Tufan;Livaoglu, Ramazan
    • Geomechanics and Engineering
    • /
    • 제5권2호
    • /
    • pp.165-185
    • /
    • 2013
  • In the present study, the numerical and experimental investigations were performed on the backfill- exterior wall-fluid interaction systems in case of empty and full tanks. For this, firstly, the non-linear three dimensional (3D) finite element models were developed considering both backfill-wall and fluid-wall interactions, and modal analyses for these systems were carried out in order to acquire modal frequencies and mode shapes by means of ANSYS finite element structural analysis program. Secondly, a series of field tests were fulfilled to define their modal characteristics and to compare the results from proposed approximation in the selected structures. Finally, comparing the theoretical predictions from the finite element models to results from experimental measurements, a close agreement was found between theory and experiment. Thus, it can be easily stated that experimental verifications provide strong support for the finite element models and the proposed procedures themselves are the meritorious approximations to the real problem, and this makes the models appealing for use in further investigations.

임플랜트 지지 보철물에서 고정체의 식립위치와 각도에 따른 삼차원 유한요소법적 응력분석에 관한 연구 (THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF IMPLANT PROSTHESIS ACCORDING TO THE DIFFERENT FIXTURE LOCATIONS AND ANGULATIONS)

  • 박원희;이영수
    • 대한치과보철학회지
    • /
    • 제43권1호
    • /
    • pp.61-77
    • /
    • 2005
  • Statement of problem. The implant prosthesis has been utilized in various clinical cases thanks to its increase in scientific effective application. The relevant implant therapy should have the high success rate in osseointegration, and the implant prosthesis should last for a long period of time without failure. Resorption of the peri-implant alveolar bone is the most frequent and serious problem in implant prosthesis. Excessive concentration of stress from the occlusal force and biopressure around the implant has been known to be the main cause of the bone destruction. Therefore, to decide the location and angulation of the implant is one of the major considering factors for the stress around the implant fixture to be dispersed in the limit of bio-capacity of load support for the successful and long-lasting clinical result. Yet, the detailed mechanism of this phenomenon is not well understood. To some extent, this is related to the paucity of basic science research. Purpose. The purpose of this study is to perform the stress analysis of the implant prosthesis in the partially edentulous mandible according to the different nature locations and angulations using three dimensional finite element method. Material and methods, Three 3.75mm standard implants were placed in the area of first and second bicuspids, and first molar in the mandible Thereafter, implant prostheses were fabricated using UCLA abutments. Five experimental groups were designed as follows : 1) straight placement of three implants, 2) 5$^{\circ}$ buccal and lingual angulation of straightly aligned three implants, 3) 10$^{\circ}$ buccal and lingual angulation of straightly aligned three implants. 4) lingual offset placement of three implants, and 5) buccal offset placement of three implants. Average occlusal force with a variation of perpendicular and 30$^{\circ}$ angulation was applied on the buccal cusp of each implant prosthesis, followed by the measurement of alteration and amount of stress on each configurational implant part and peri-implant bio-structures. The results of this study are extracted from the comparison between the distribution of Von mises stress and the maximum Von mises stress using three dimensional finite element stress analysis for each experimental group. Conclusion. The conclusions were as follows : 1. Providing angulations of the fixture did not help in stress dispersion in the restoration of partially edentulous mandible. 2. It is beneficial to place the fixture in a straight vertical direction, since bio-pressure in the peri-implant bone increases when the fixture is implanted in an angle. 3. It is important to select an appropriate prosthodontic material that prevents fractures, since the bio-pressure is concentrated on the prosthodontic structures when the fixture is implanted in an angle. 4. Offset placement of the fixtures is effective in stress dispersion in the restoration of partially edentulous mandible.

An evaluation of the stress effect of different occlusion concepts on hybrid abutment and implant supported monolithic zirconia fixed prosthesis: A finite element analysis

  • Yesilyurt, Nilgün Gulbahce;Tuncdemir, Ali Riza
    • The Journal of Advanced Prosthodontics
    • /
    • 제13권4호
    • /
    • pp.216-225
    • /
    • 2021
  • PURPOSE. The aim of this study is to evaluate the effects of canine guidance occlusion and group function occlusion on the degree of stress to the bone, implants, abutments, and crowns using finite element analysis (FEA). MATERIALS AND METHODS. This study included the implant-prosthesis system of a three-unit bridge made of monolithic zirconia and hybrid abutments. Three-dimensional (3D) models of a bone-level implant system and a titanium base abutment were created using the original implant components. Two titanium implants, measuring 4 × 11 mm each, were selected. The loads were applied in two oblique directions of 15° and 30° under two occlusal movement conditions. In the canine guidance condition, loads (100 N) were applied to the canine crown only. In the group function condition, loads were applied to all three teeth. In this loading, a force of 100 N was applied to the canine, and 200-N forces were applied to each premolar. The stress distribution among all the components of the implant-bridge system was assessed using ANSYS SpaceClaim 2020 R2 software and finite element analysis. RESULTS. Maximum stress was found in the group function occlusion. The maximum stress increased with an increase in the angle of occlusal force. CONCLUSION. The canine guidance occlusion with monolithic zirconia crown materials is promising for implant-supported prostheses in the canine and premolar areas.

Numerical Simulation of the Elastic Moduli of Cement Paste As a Three Dimensional Unit Cell

  • Park, Ki-Bong
    • Architectural research
    • /
    • 제12권2호
    • /
    • pp.93-98
    • /
    • 2010
  • This paper describes a numerical method for estimating the elastic moduli of cement paste. The cement paste is modeled as a unit cell which consists of three components: the unhydrated cement grain, the gel, and the capillary pore. In the unit cell, the volume fractions of the constituents are quantified using a single kinetic function calculating the degree of hydration. The elastic moduli of cement paste are calculated from the total displacements of constituents when a uniform pressure is applied to the gel contact area. The cement paste is assumed to be a homogenous isotropic matrix. Numerical simulations were conducted through the finite element analysis of the three-dimensional periodic unit cell. The model predictions are compared with experimental results. The predicted trends are in good agreement with experimental observations. This approach and some of the results might also be relevant for other technical applications.

저항 다점용접부의 역학적 특성에 관한 연구 (A Study on the Mechanical Characteristics of the Resistance Multi-spot Welded Joints)

  • 방한서;방희선
    • Journal of Welding and Joining
    • /
    • 제19권5호
    • /
    • pp.499-505
    • /
    • 2001
  • In order to classify the mechanical phenomena of thermal elasto-plastic behavior on the multi-spot welded joints, this study has tried to carry out three-dimensional thermal elasto-plastic analysis on them. However, because the shape of multi-spot welded joints is not taxi-symmetric, unlike the cafe of single-spot welded joint, the solution domain for simulation should be three dimension. Therefore, in this paper, firstly, the three-dimensional thermal elasto-plastic program is developed by an iso-parametric finite element method. Secondly, from the results analyzed by developed program, this has clarified mechanical characteristics and their production mechanism on single and multi-spot waled joints. Moreover, it has been intended to make clear effects of pitch length on welding residual stresses, plastic strain of multi-spot welded joints.

  • PDF

베벨기어의 밀폐단조 공정설계를 위한 유한요소해석 (Finite Element Analysis for Design of Closed Die Forging Process of a Bevel Gear)

  • 김용조;박성대
    • 한국기계가공학회지
    • /
    • 제2권1호
    • /
    • pp.92-99
    • /
    • 2003
  • Bevel gears are important mechanical parts to transmit power in transportation system high precision parts like bevel gears might be manufactured by closed die forging process for dimensional accuracy. Closed die forging of bevel gears offers the high quality and good mechanical properties and also leads to considerable cost saving. To determinate the proper closed-die forging process for bevel gear forms, three-dimensional finite element simulation for the progressive forging process was earned out and also the simulation results were compared with experimental results.

  • PDF

유한요소해석을 위한 3차원 구조물의 기하학적 모델링 (Geometric Modelling of 3-Dimensional Structures for Finite Element Analysis)

  • 이재영;이진휴
    • 전산구조공학
    • /
    • 제4권1호
    • /
    • pp.109-120
    • /
    • 1991
  • 이 논문은 유한요소해석의 전처리를 위한 3차원 구조물의 가하학적 모델링 방법을 제안하였다. 여기서 제안한 모델링 체계에 의하면 구조물의 모델은 조절점, 곡선, 곡면 및 입체의 계층적 구성에 따라서 단계적으로 형성된다. 혼성함수와 경계표현법을 기본으로하는 여러가지 곡면 및 입체의 모델링 방법을 유한요소망 발생에 적합하도록 체계화하였으며, 모델합성 및 연산방법을 제시하였다. 이를 바탕으로 새로운 유한요소해석 전처리 프로그램을 개발하였다.

  • PDF