• Title/Summary/Keyword: Three dimensional numerical computation

Search Result 141, Processing Time 0.023 seconds

Study on Fluid Flow in Rectangular Duct past $90^{\circ}$ Mitered Elbow (사각덕트내 직각엘보우를 지난 유체유동에 관한 연구)

  • 윤영환;배택희;박원구
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.6
    • /
    • pp.670-678
    • /
    • 2002
  • Fluid flow in a rectangular duct with $90^{\circ}$ mitered elbow is measured by 5W laser doppler velocity meter. The fluid flow is also computed by commercial software of STAR-CD for comparison between measured and computed velocity profiles in the duct. Reynolds numbers for the comparison are 1,608 and 11,751 based on mean velocity and hydraulic diameter of the duct. First, the fluid flow of Reynolds number equal to 1,608 is predicted by assumptions of both laminar and turbulent models. But, even though the Reynolds number is less than 2,300~3,000, the computation by turbulent model is closed to the experimental data than that by laminar model. Second, the computation for Reynolds number of 11,751 by turbulent model also predicted the experimental data satisfactorily.

Volumetric Interferometry Using Spherical Wave Interference for Three-dimensional Coordinate Metrology

  • Rhee, Hyug-Gyo;Chu, Ji-Young;Kim, Seung-Woo
    • Journal of the Optical Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.140-145
    • /
    • 2001
  • We present a new method of volumetric interferometer, which is intended to measure the three-dimensional coordinates of a moving object in a simultaneous way with a single optical setup. The method is based on the principles of phase-measuring interferometry with phase shifting. Two diffraction point sources, which are made of the polished ends of single-mode optical fibers are embedded on the object. Two spherical wavefronts emanate from the diffraction point sources and interfere with each other within the measurement volume. One wavefront is phase-shifted by elongating the corresponding fiber using a PZT extender. A CCD array sensor fixed at the stationary measurement station detects the resulting interference field. The measured phases are then related to the three-dimensional location of the object with a set of non-liner equations of Euclidean distance, from which the complete set of three-dimensional spatial coordinates of the object is determined through rigorous numerical computation based upon the least square error minimization.

Parallel Computations for Boundary Element Analysis of Magnetostatic Fields (정자계의 경계요소 해석을 위한 병렬계산)

  • Kim, Keun-Hwan;Choi, Kyung;Jung, Hyun-Kyo;Lee, Ki-Sik;Hahn, Song-Yop
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.5
    • /
    • pp.468-473
    • /
    • 1992
  • A boundary element analysis using parallel algorithm on transputers is described for three-dimensional magnetostatic field computations. The parallel algorithm are applied to assembling the system matrix and solving the matrix equation. Through the numerical results, it is shown that the computation time is ideally inverse proportional to the number of transputers, and the computational efficiency increases as the size of the system matrix becomes large. The easiness and simplicity in configuring the system hardware and making programs and computation times are compared in three kinds of topologies.

  • PDF

Numerical Investigation for the Optimization of Two-Dimensional Adaptive Wall (2차원 적응벽면의 최적화에 관한 수치적 연구)

  • Chang B. H.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.134-141
    • /
    • 1996
  • Wall interference is one of the major obstacles to increase the model size and data accuracy. There have been many treatments for wall interference including interference correction and adaptive wall test section. Recently, two-flexible-walled adaptive wall test section is concluded adequate for three-dimensional test. But proper location of target line and pressure holes are critical to its success. In this study, a new adaptive algorithm which dispenses target line and dependency of pressure hole distribution is suggested. The wind tunnel and free air tests are simulated by the numerical computation of Euler equations. The optimum wall shape is achieved by two variable optimization which is composed of two base streamlines. The wall interference is reduced well in the optimized result which is not sensitive to the base streamlines.

  • PDF

Quasi-3-Dimensional Analysis of Compressible Flow within a Blade Row Including Viscous Effect in H-S Flow (H-S 유동의 점성효과를 고려한 원심압축기 회전차내부의 준3차원 유동해석)

  • 오종식;조강래
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3287-3296
    • /
    • 1994
  • For the numerical computation of three-dimensional compressible flow field within a blade row in a centrifugal compressor, a quasi 3-dimensional solver which combines a reversible B-B flow and an irreversible H-S flow using finite element methods was developed. In a reversible B-B flow, the governing coordinates are modified in order to be applied to any type of turbomachinery, and two kinds of stream functions are introduced in order to make the Kutta condition exactly satisfied. In an irreversible H-S flow, the changes of entropy in the irreversible governing equations are determined not by empirical source but by the theoretical treatment of dissipation forces. The dissipation forces are obtained from the distribution of shear stresses in the flow passage which are given from the wall shear stresses using the exponential functions. A more accurate quasi-3-dimensional solver is established where the effect of body forces is involved in the non-axisymmetric H-S flow. Some numerical results obtained from authors' previous studies for axial flow machines assure that the present method is able to predict well as long as the flow is subsonic and not under strong viscous effect.

Parallel computation for debonding process of externally FRP plated concrete

  • Xu, Tao;Zhang, Yongbin;Liang, Z.Z.;Tang, Chun-An;Zhao, Jian
    • Structural Engineering and Mechanics
    • /
    • v.38 no.6
    • /
    • pp.803-823
    • /
    • 2011
  • In this paper, the three dimensional Parallel Realistic Failure Process Analysis ($RFPA^{3D}$-Parallel) code based on micromechanical model is employed to investigate the bonding behavior in FRP sheet bonded to concrete in single shear test. In the model, the heterogeneity of brittle disordered material at a meso-scale was taken into consideration in order to realistically demonstrate the mechanical characteristics of FRP-to-concrete. Modified Mohr-coulomb strength criterion with tension cut-off, where a stressed element can damage in shear or in tension, was adopted and a stiffness degradation approach was used to simulate the initiation, propagation and growth of microcracks in the model. In addition, a Master-Slave parallel operation control technique was adopted to implement the parallel computation of a large numerical model. Parallel computational results of debonding of FRP-concrete visually reproduce the spatial and temporal debonding failure progression of microcracks in FRP sheet bonded to concrete, which agrees well with the existing testing results in laboratory. The numerical approach in this study provides a useful tool for enhancing our understanding of cracking and debonding failure process and mechanism of FRP-concrete and our ability to predict mechanical performance and reliability of these FRP sheet bonded to concrete structures.

Numerical Computations of Extreme Wave Load on a Cylinder Using Frequency-Focusing unidirectional waves

  • Kyoung, Jo-Hyun;Hong, Sa-Young;Sung, Hong-Gun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.135-140
    • /
    • 2006
  • Numerical computations are made to predict wave loads on a vertical cylinder in an extreme wave. To generate the extreme wave, a frequency-focused unidirectional wave is adopted in three-dimensional numerical wave tank. The mathematical formulation is wide in the scope of the potential theory with fully nonlinear free surface conditions. As a numerical method, finite element method based on variational principle is applied. Comparisons between the present numerical results and the previous computation data. show a good agreement.

  • PDF

Two-dimensional numerical simulation study on the nanowire-based logic circuits (나노선 기반 논리 회로의 이차원 시뮬레이션 연구)

  • Choi, Chang-Yong;Cho, Won-Ju;Chung, Hong-Bay;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.82-82
    • /
    • 2008
  • One-dimensional (1D) nanowires have been received much attention due to their potential for applications in various field. Recently some logic applications fabricated on various nanowires, such as ZnO, CdS, Si, are reported. These logic circuits, which consist of two- or three field effect transistors(FETs), are basic components of computation machine such as central process unit (CPU). FETs fabricated on nanowire generally have surrounded shapes of gate structure, which improve the device performance. Highly integrated circuits can also be achieved by fabricating on nano-scaled nanowires. But the numerical and SPICE simulation about the logic circuitry have never been reported and analyses of detailed parameters related to performance, such as channel doping, gate shapes, souce/drain contact and etc., were strongly needed. In our study, NAND and NOT logic circuits were simulated and characterized using 2- and 3-dimensional numerical simulation (SILVACO ATLAS) and built-in spice module(mixed mode).

  • PDF

A new algorithm for detecting the collision of moving objects

  • Hong, S.M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10b
    • /
    • pp.1014-1020
    • /
    • 1990
  • Iterative algorithms for detecting the collision of convex objects whose motion is characterized by a path in configuration space are described. They use as an essential substep the computation of the distance between the two objects. When the objects are polytopes in either two or three dimensional space, an algorithm is given which terminates in a finite number of iterations. It determines either that no collision occurs or the first collision point on the path. Extensive numerical experiments for practical problems show that the computational time is short and grows only linearly in the total number of vertices of the two polytopes.

  • PDF

Numerical Study of Inlet and Impeller Flow Structures in Centrifugal Pump at Design and Off-design Points

  • Cheah, Kean Wee;Lee, Thong-See;Winoto, S.H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.25-32
    • /
    • 2011
  • The objective of present work is to use numerical simulation to investigate the complex three-dimensional and secondary flow structures developed at the inlet and impeller in a centrifugal pump at design and off-design points. The pump impeller is shrouded with 6 backward swept blades and with a specific speed of 0.8574. The characteristic of the pump is measured experimentally with straight and curved intake sections. Numerical computation is carried out to investigate the pump inlet flow structures and subsequently the flow field within the centrifugal pump. The numerical results showed that strong interaction between the impeller eye and intake section. Secondary flow structure occurs upstream at the pump inlet has great influence on the pump performance and flow structure within the impeller.