• 제목/요약/키워드: Thioredoxin-1

검색결과 92건 처리시간 0.052초

Neurogenic effect of exercise via the thioredoxin-1/ extracellular regulated kinase/β-catenin signaling pathway mediated by β2-adrenergic receptors in chronically stressed dentate gyrus

  • Kim, Mun-Hee;Leem, Yea-Hyun
    • 운동영양학회지
    • /
    • 제23권3호
    • /
    • pp.13-21
    • /
    • 2019
  • [Purpose] Chronic stress is a precipitating factor for depression, whereas exercise is beneficial for both the mood and cognitive process. The current study demonstrates the anti-depressive effects of regular exercise and the mechanisms linked to hippocampal neurogenesis. [Methods] Mice were subjected to 14 consecutive days of restraint, followed by 3 weeks of treadmill running, and were then subjected to behavioral tests that included the forced swimming and Y-maze tests. Protein levels were assessed using western blot analysis and newborn cells were detected using 5-bromo-2'-deoxyuridine (BrdU). [Results] Three weeks of treadmill running ameliorated the behavioral depression caused by 14 days of continuous restraint stress. The exercise regimen enhanced BrdU-labeled cells and class III β-tubulin levels in the hippocampal dentate gyrus, as well as those of thioredoxin-1 (TRX-1) and synaptosomal β2-adrenergic receptors (β2-AR) under stress. In vitro experiments involving treatment with recombinant human TRX-1 (rhTRX-1) augmented the levels of phospho-extracellular signal-regulated kinases 1 and 2 (ERK1/2), nuclear β-catenin, and proliferating cell nuclear antigens, which were previously inhibited by U0216 and FH535 (inhibitors of ERK1/2 and β-catenin/T cell factor-mediated transcription, respectively). The hippocampal neurogenesis elicited by a 7-day exercise regimen was abolished by a selective inhibitor of β2-AR, butoxamine. [Conclusion] These results suggest that TRX-1-mediated hippocampal neurogenesis by β2-AR function is a potential mechanism underlying the psychotropic effect of exercise.

Transcriptional Analysis and Pap1-Dependence of the Unique Gene Encoding Thioredoxin Reductase from the Fission Yeast

  • Kang Hyun-Jung;Hong Sung-Min;Kim Byung-Chul;Kim Kyunghoon;Park Eun-Hee;Lim Chang-Jin
    • Journal of Microbiology
    • /
    • 제44권1호
    • /
    • pp.35-41
    • /
    • 2006
  • The unique gene encoding thioredoxin reductase (TrxR) was previously cloned and characterized from the fission yeast Schizosaccharomyces pombe, and its expression was induced by oxidative stress. To elucidate tbe regulatory mechanism of the S. pombe TrxR gene, three fusion plasmids were generated using polymerase chain reaction: pYUTR20, pYUTR30, and pYUTR40. Plasmid pYUTR20 has an upstream region of 891 base pairs, pYUTR30 has 499 in this region, and pYUTR40 has an 186 bp upstream region. Negatively acting sequence is located between $-1,526\;\~\;-891bp$ upstream of the gene. The upstream sequence, responsible for the induction of TrxR by menadione (MD), is situated on the $-499\;\~\;-186bp$ region, which is also required for TrxR induction by mercuric chloride. The same region also appeared to be required for Pap1-mediated transcriptional regulation of the TrxR gene, which contains the two plausible Papl binding sites, TTACGAAT and TTACGCGA. Consistently, basal and inducible expression of the TrxR gene was markedly lower in the Pap1-negative TP108-3C cells than in wild-type yeast cells. In summary, up-regulation of the S. pombe TrxR gene is mediated by Pap1 via the transcriptional motif(s) located on the $-499\;\~\;-186bp$ region.

Structural basis of novel TRP14, thioredoxin-related protein that regulates TNE-$\alpha$ signaling pathways

  • Woo, Joo-Rang;Jeong, Woo-Jin;Rhee, Sue-Goo;Ryu, Seong-Eon
    • 한국결정학회:학술대회논문집
    • /
    • 한국결정학회 2003년도 춘계학술연구발표회
    • /
    • pp.18-18
    • /
    • 2003
  • Thioredoxin (Trx) is a small redox protein that is ubiquitously distributed from achaes to human. In diverse organisms, the protein is involved in various physiological roles by acting as electron donor and regulators of transcription and apoptosis as well as antioxidants. Sequences of Trx within various species are 27~69% identical to that of E. coli and all Trx proteins have the same overall fold, which consists of central five β strands surrounded by four α helices. The N-terminal cysteine in WCGPC motif of Trx is redox sensitive and the motif is highly conserved. Compared with general cysteine, the N-terminal cysteine has low pKa value. The result leads to increased reduction activity of protein. Recently, novel thio.edoxin-related protein (TRP14) was found from rat brain. TRP14 acts as disulfide reductase like Trx1, and its redox potential and pKa are similar to those of Trx1. However, TRP14 takes up electrons from cytosolic thioredoxin reductase (TrxR1), not from the mitochondrial thioredoxin reductase (TrxR2). Biological roles of TES14 were reported to be involved in regulating TNF-α induced signaling pathways in different manner with Trx1. In depletion experiments, depletion of TRP14 increased TNF-α induced phosphorylation and degradation of IκBα more than the depletion Trx1 did. It also facilitated activation of JNK and p38 MAP kinase induced by TNF-α. Unlike Trx1, TRP14 shows neither interaction nor interference with ASK1. Here, we determined three-dimensional crystal structure of TRP14 by MAD method at 1.8Å. The structure reveals that the conserved cis-Pro (Pro90) and active site-W-C-X-X-C motif, which may be involved in substrate recognition similar to Trx1 , are located at the beginning position of strand β4 and helix α2, respectively. The TRP14 structure also shows that surface of TRP14 in the vicinity of the active site, which is surrounded by an extended flexible loop and an additional short a helix, is different from that of Trx1. In addition, the structure exhibits that TRP14 interact with a distinct target proteins compared with Trx1 and the binding may depend mainly on hydrophobic and charge interactions. Consequently, the structure supports biological data that the TRP14 is involved in regulating TNF-α induced signaling pathways in different manner with Trx1.

  • PDF

코리네박테리움 디프테리아 티올 특이성 항산화단백 DirA의 발현 및 특성 (Expression and Characterization of Thiol-Specific Antioxidant Protein, DirA of Corynebacterium diphtheriae)

  • Myung-Jai Choi;Kanghwa Kim;Won-Ki Choi
    • 대한의생명과학회지
    • /
    • 제4권1호
    • /
    • pp.1-9
    • /
    • 1998
  • 효모의 티올특이성 항산화단백과 아미노산 서열상 상동성을 보이는 50종류의 단백은 새로운 항산화 단백군을 형성하며 또한 병원성 미생물에도 널리 분포하고 있으나 이들 단백의 생화학적 및 생리적인 기능은 거의 알려져 있지 않은 실정이다. 본 연구는 병원성 미생물의 티올특이성 항산화단백의 기능에 관한 연구로서 Saccharomyces cerevisiae의 TSA 및 Salmonella typhimurium alkcyl hydroperoxide reductase의 AhpC subunit와 상동성을 나타내는 Corynebacterium diphtheriae의 DirA 유전자를 PCR 방법으로 클로닝하고 대장균에 발현시킨 후 정제하여 항산화 특성을 조사하였다. 정제된 DirA는 티올을 함유하는 금속촉매 산화계인 DTT/Fe$^{3+}$를 선택적으로 억제하였으며 티오레독신 의존성 과산화물 분해활성을 나타내었다. DTT/Fe$^{3+}$ 금속촉매 산화계에 의한 효소의 불활성화를 50% 억제 하는 DirA의 농도는 0.12 mg/ml로 효모 TSA 항산화활성의 약1/4 수준이었으며, 효모의 티 오레 독신계와 반응시켰을때 과산화물 분해활성은 0.02 unit/mg로서 효모 TSA의 티오레독신 의존성 과산화물 분해활성의 1/20수준이었다. 정제된 단백질을 이용하여 항체를 제조하였으며 이항체를 이용하여 Corynebacterium diphtheriae에서 발현됨을 확인하였다. 이러한 결과를 통하여 Corynebacterium diphtheriae의 병원성은 숙주세포의 방어기전인 백혈구에 의하여 생성되는 과산화수소 또는 다른 활성산소종을 제거하는 DirA작용과 연관이 있는 것으로 사료된다.

  • PDF

Molecular Cloning, Expression and Functional Characterization of a Peroxiredoxin from the Mole Cricket, Gryllotalpa orientalis

  • Kim, Iksoo;Kang sun Ryu;Kim, Jin-Won;Ahn, Mi-Young;Kwang Sik;Jin, Byung-Rae
    • 한국잠사학회:학술대회논문집
    • /
    • 한국잠사학회 2003년도 International Symposium of Silkworm/Insect Biotechnology and Annual Meeting of Korea Society of Sericultural Science
    • /
    • pp.130-133
    • /
    • 2003
  • Peroxiredoxins are a family of antioxidant proteins ubiquitously found in all living organisms. A type of peroxidase enzyme, named thioredoxin peroxidase (TPx), that reduces $H_2O$$_2$ with the use of electrons from thioredoxin and contains two essential cysteines was identified in a wide variety of organisms ranging from prokaryotes to mammals. TPx homologs, termed peroxiredoxin (Prx), have also been identified and include several proteins, designated 1-Cys Prx, that contain only one conserved cysteine. (omitted)

  • PDF

Molecular Mechanism of Reactive Oxygen Species-dependent ASK1 Activation in Innate Immunity

  • Yamauchi, Shota;Noguchi, Takuya;Ichijo, Hidenori
    • IMMUNE NETWORK
    • /
    • 제8권1호
    • /
    • pp.1-6
    • /
    • 2008
  • Apoptosis signal-regulating kinase 1 (ASK1), a mitogen- activated protein kinase kinase kinase, plays pivotal roles in stress responses. In addition, ASK1 has emerged as a key regulator of immune responses elicited by pathogen-associated molecular patterns (PAMPs) and endogenous danger signals. Recent studies have demonstrated that reactive oxygen species (ROS)-dependent activation of ASK1 is required for LPS-stimulated cytokine production as well as extracellular ATP-induced apoptosis in immune cells. The mechanism of ROS-dependent regulation of ASK1 activity by thioredoxin and TRAFs has been well characterized. In this review, we focus on the molecular details of the activation of ASK1 and its involvement in innate immunity.

Molecular characterization and biological changes caused by Agrobacterium-mediated infiltration of PgTRX1

  • Choi, Seung Hyuk;Seo, Ji Won;Lee, Jae Geun;Yu, Chang Yeon;Seong, Eun Soo
    • Journal of Applied Biological Chemistry
    • /
    • 제64권3호
    • /
    • pp.205-211
    • /
    • 2021
  • In order to test the functionality of Panax ginseng thioredoxin 1 (PgTRX1) isolated from fermented wild ginseng roots, a transient effect on physiological activity were performed over a short time frame using the Agrobacterium infiltration technique. The PgTRX1 gene isolated from fermented wild ginseng was confirmed to have a size of 579 bp, and the expression of PgTRX1 was the highest in the sample after 6 h of fermentation. As a result of constructing this gene and confirming the infiltration reaction mediated by Agrobacterium in tobacco leaves, it was found that the expression of the NbHSR203j gene was also induced as PgTRX1 expression increased. As a result of measuring the biological activity of the infiltration samples, the total phenol content increased by 35.45±1.84 to 49.01±1.84 ㎍ GAE/mL compared to the control, and the total flavonoid amount of 9.52±0.41 to 9.82±0.25 ㎍ QE/mL was slightly high. From these results, Agrobacterium-mediated PgTRX1 appears to be related to the hypersensitive response induction mechanism of plants and the production of secondary metabolites such as phenolic substances.

Fluctuation of Temperature Induces Pathogenicity of Streptococcus iniae and Changes of Immunology Related Genes of Korean Rockfish, Sebastes schlegeli

  • EunYoung Min;Seon-Myeong Jeong;Hyun-Ja Han;Miyoung Cho
    • 생태와환경
    • /
    • 제56권4호
    • /
    • pp.420-429
    • /
    • 2023
  • This study was designed to examine the immune response in Korean rockfish during water temperature fluctuation and to elucidate the factors contributing to streptococcal pathogenesis in cultured Korean rockfish, S. schlegeli. We investigated cumulative mortality against Streptococcus iniae (FP5228 strain) infection in the exposed Korean rockfish (39.7±5.8 g) to environmentally relevant temperature (Control, 23℃; High temperature, 28℃ and 23℃ and 28℃ with 12 hours interval exchange, 23↔28℃) for 48 hours. Also, the expression of the mRNA related to the immune response genes (heat shock protein 70, interleukin1β, lysozyme g-type and thioredoxin-like 1) were measured in spleen and head kidney by real-time PCR analysis in the exposed fish to thermal stress. In this study, the combined stress with bacterial challenge in fishes exposed to thermal stress lowered the survival rate than that of control (23℃). The cumulative mortality in the group of control, 28℃ and 23↔28℃ was 24%, 24% and 40% (P<0.05), respectively. Also, thermal stress modulated the mRNA level of immune related genes; heat shock protein 70, interleukin-1β, lysozyme g-type and thioredoxin-like 1 in Korean rockfish. The present study indicates that a high and sudden water temperature change affect immune responses and reduce the disease resistance in Korean rockfish.

Crystal Structure of DsbA from Corynebacterium diphtheriae and Its Functional Implications for CueP in Gram-Positive Bacteria

  • Um, Si-Hyeon;Kim, Jin-Sik;Song, Saemee;Kim, Nam Ah;Jeong, Seong Hoon;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • 제38권8호
    • /
    • pp.715-722
    • /
    • 2015
  • In Gram-negative bacteria in the periplasmic space, the dimeric thioredoxin-fold protein DsbC isomerizes and reduces incorrect disulfide bonds of unfolded proteins, while the monomeric thioredoxin-fold protein DsbA introduces disulfide bonds in folding proteins. In the Gram-negative bacteria Salmonella enterica serovar Typhimurium, the reduced form of CueP scavenges the production of hydroxyl radicals in the copper-mediated Fenton reaction, and DsbC is responsible for keeping CueP in the reduced, active form. Some DsbA proteins fulfill the functions of DsbCs, which are not present in Gram-positive bacteria. In this study, we identified a DsbA homologous protein (CdDsbA) in the Corynebacterium diphtheriae genome and determined its crystal structure in the reduced condition at $1.5{\AA}$ resolution. CdDsbA consists of a monomeric thioredoxin-like fold with an inserted helical domain and unique N-terminal extended region. We confirmed that CdDsbA has disulfide bond somerase/reductase activity, and we present evidence that the N-terminal extended region is not required for this activity and folding of the core DsbA-like domain. Furthermore, we found that CdDsbA could reduce CueP from C. diphtheriae.