DOI QR코드

DOI QR Code

Crystal Structure of DsbA from Corynebacterium diphtheriae and Its Functional Implications for CueP in Gram-Positive Bacteria

  • Um, Si-Hyeon (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University) ;
  • Kim, Jin-Sik (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University) ;
  • Song, Saemee (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University) ;
  • Kim, Nam Ah (College of Pharmacy, Dongguk University) ;
  • Jeong, Seong Hoon (College of Pharmacy, Dongguk University) ;
  • Ha, Nam-Chul (Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University)
  • Received : 2015.04.09
  • Accepted : 2015.05.11
  • Published : 2015.08.31

Abstract

In Gram-negative bacteria in the periplasmic space, the dimeric thioredoxin-fold protein DsbC isomerizes and reduces incorrect disulfide bonds of unfolded proteins, while the monomeric thioredoxin-fold protein DsbA introduces disulfide bonds in folding proteins. In the Gram-negative bacteria Salmonella enterica serovar Typhimurium, the reduced form of CueP scavenges the production of hydroxyl radicals in the copper-mediated Fenton reaction, and DsbC is responsible for keeping CueP in the reduced, active form. Some DsbA proteins fulfill the functions of DsbCs, which are not present in Gram-positive bacteria. In this study, we identified a DsbA homologous protein (CdDsbA) in the Corynebacterium diphtheriae genome and determined its crystal structure in the reduced condition at $1.5{\AA}$ resolution. CdDsbA consists of a monomeric thioredoxin-like fold with an inserted helical domain and unique N-terminal extended region. We confirmed that CdDsbA has disulfide bond somerase/reductase activity, and we present evidence that the N-terminal extended region is not required for this activity and folding of the core DsbA-like domain. Furthermore, we found that CdDsbA could reduce CueP from C. diphtheriae.

Keywords

References

  1. Achard, M.E., Stafford, S.L., Bokil, N.J., Chartres, J., Bernhardt, P.V., Schembri, M.A., Sweet, M.J., and McEwan, A.G. (2012). Copper redistribution in murine macrophages in response to Salmonella infection. Biochem. J. 444, 51-57. https://doi.org/10.1042/BJ20112180
  2. Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K., and Terwilliger, T.C. (2002). PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D. Biol. Crystallogr. 58, 1948-1954. https://doi.org/10.1107/S0907444902016657
  3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
  4. Babior, B.M. (1999). NADPH oxidase: an update. Blood 93, 1464-1476.
  5. Chen, Y., Yu, P., Luo, J., and Jiang, Y. (2003). Secreted protein prediction system combining CJ-SPHMM, TMHMM, and PSORT. Mamm. Genome 14, 859-865. https://doi.org/10.1007/s00335-003-2296-6
  6. Cho, S.H., and Collet, J.F. (2013). Many roles of the bacterial envelope reducing pathways. Antioxid. Redox Signal. 18, 1690-1698. https://doi.org/10.1089/ars.2012.4962
  7. Crow, A., Lewin, A., Hecht, O., Carlsson Moller, M., Moore, G.R., Hederstedt, L., and Le Brun, N.E. (2009). Crystal structure and biophysical properties of Bacillus subtilis BdbD. An oxidizing thiol:disulfide oxidoreductase containing a novel metal site. J. Biol. Chem. 284, 23719-23733. https://doi.org/10.1074/jbc.M109.005785
  8. Dorenbos, R., Stein, T., Kabel, J., Bruand, C., Bolhuis, A., Bron, S., Quax, W.J., and Van Dijl, J.M. (2002). Thiol-disulfide oxidoreductases are essential for the production of the lantibiotic sublancin 168. J. Biol. Chem. 277, 16682-16688. https://doi.org/10.1074/jbc.M201158200
  9. Dumoulin, A., Grauschopf, U., Bischoff, M., Thony-Meyer, L., and Berger-Bachi, B. (2005). Staphylococcus aureus DsbA is a membrane-bound lipoprotein with thiol-disulfide oxidoreductase activity. Arch. Microbiol. 184, 117-128. https://doi.org/10.1007/s00203-005-0024-1
  10. Erlendsson, L.S., and Hederstedt, L. (2002). Mutations in the thioldisulfide oxidoreductases BdbC and BdbD can suppress cytochrome c deficiency of CcdA-defective Bacillus subtilis cells. J. Bacteriol. 184, 1423-1429. https://doi.org/10.1128/JB.184.5.1423-1429.2002
  11. Goldstone, D., Haebel, P.W., Katzen, F., Bader, M.W., Bardwell, J.C., Beckwith, J., and Metcalf, P. (2001). DsbC activation by the N-terminal domain of DsbD. Proc. Natl. Acad. Sci. USA 98, 9551-9556. https://doi.org/10.1073/pnas.171315498
  12. Guddat, L.W., Bardwell, J.C. and Martin, J.L. (1998). Crystal structures of reduced and oxidized DsbA: investigation of domain motion and thiolate stabilization. Structure 6, 757-767. https://doi.org/10.1016/S0969-2126(98)00077-X
  13. Haraga, A., Ohlson, M.B., and Miller, S.I. (2008). Salmonellae interplay with host cells. Nat. Rev. Microbiol. 6, 53-66. https://doi.org/10.1038/nrmicro1788
  14. Hatahet, F., Boyd, D., and Beckwith, J. (2014). Disulfide bond formation in prokaryotes: history, diversity and design. Biochim. Biophys. Acta 1844, 1402-1414. https://doi.org/10.1016/j.bbapap.2014.02.014
  15. Heras, B., Kurz, M., Jarrott, R., Shouldice, S.R., Frei, P., Robin, G., Cemazar, M., Thony-Meyer, L., Glockshuber, R., and Martin, J.L. (2008). Staphylococcus aureus DsbA does not have a destabilizing disulfide. A new paradigm for bacterial oxidative folding. J. Biol. Chem. 283, 4261-4271. https://doi.org/10.1074/jbc.M707838200
  16. Heras, B., Shouldice, S.R., Totsika, M., Scanlon, M.J., Schembri, M.A., and Martin, J.L. (2009). DSB proteins and bacterial pathogenicity. Nat. Rev. Microbiol. 7, 215-225. https://doi.org/10.1038/nrmicro2087
  17. Hiniker, A., Collet, J.F., and Bardwell, J.C. (2005). Copper stress causes an in vivo requirement for the Escherichia coli disulfide isomerase DsbC. J. Biol. Chem. 280, 33785-33791. https://doi.org/10.1074/jbc.M505742200
  18. Hodgkinson, V., and Petris, M.J. (2012). Copper homeostasis at the host-pathogen interface. J. Biol. Chem. 287, 13549-13555. https://doi.org/10.1074/jbc.R111.316406
  19. Huber-Wunderlich, M., and Glockshuber, R. (1998). A single dipeptide sequence modulates the redox properties of a whole enzyme family. Fold Des. 3, 161-171. https://doi.org/10.1016/S1359-0278(98)00024-8
  20. Jiao, L., Kim, J.S., Song, W.S., Yoon, B.Y., Lee, K., and Ha, N.C. (2013). Crystal structure of the periplasmic disulfide-bond isomerase DsbC from Salmonella enterica serovar Typhimurium and the mechanistic implications. J. Struct. Biol. 183, 1-10. https://doi.org/10.1016/j.jsb.2013.05.013
  21. Kouwen, T.R., van der Goot, A., Dorenbos, R., Winter, T., Antelmann, H., Plaisier, M.C., Quax, W.J., van Dijl, J.M. and Dubois, J.Y. (2007). Thiol-disulphide oxidoreductase modules in the low-GC Gram-positive bacteria. Mol. Microbiol. 64, 984-999. https://doi.org/10.1111/j.1365-2958.2007.05707.x
  22. Martin, J.L. (1995). Thioredoxin--a fold for all reasons. Structure 3, 245-250. https://doi.org/10.1016/S0969-2126(01)00154-X
  23. Martin, J.L., Waksman, G., Bardwell, J.C., Beckwith, J. and Kuriyan, J. (1993). Crystallization of DsbA, an Escherichia coli protein required for disulphide bond formation in vivo. J. Mol. Biol. 230, 1097-1100. https://doi.org/10.1006/jmbi.1993.1226
  24. Matias, V.R. and Beveridge, T.J. (2006). Native cell wall organization shown by cryo-electron microscopy confirms the existence of a periplasmic space in Staphylococcus aureus. J. Bacteriol. 188, 1011-1021. https://doi.org/10.1128/JB.188.3.1011-1021.2006
  25. Meima, R., Eschevins, C., Fillinger, S., Bolhuis, A., Hamoen, L.W., Dorenbos, R., Quax, W.J., van Dijl, J.M., Provvedi, R., Chen, I., et al. (2002). The bdbDC operon of Bacillus subtilis encodes thioldisulfide oxidoreductases required for competence development. J. Biol. Chem. 277, 6994-7001. https://doi.org/10.1074/jbc.M111380200
  26. Mohanty, P., Patel, A., and Kushwaha Bhardwaj, A. (2012). Role of H- and D- MATE-type transporters from multidrug resistant clinical isolates of Vibrio fluvialis in conferring fluoroquinolone resistance. PLoS One 7, e35752. https://doi.org/10.1371/journal.pone.0035752
  27. Nakamoto, H., and Bardwell, J.C. (2004). Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim. Biophys. Acta 1694, 111-119. https://doi.org/10.1016/j.bbamcr.2004.02.012
  28. Osman, D., Patterson, C.J., Bailey, K., Fisher, K., Robinson, N.J., Rigby, S.E., and Cavet, J.S. (2013). The copper supply pathway to a Salmonella Cu,Zn-superoxide dismutase (SodCII) involves P(1B)-type ATPase copper efflux and periplasmic CueP. Mol. Microbiol. 87, 466-477. https://doi.org/10.1111/mmi.12107
  29. Otwinosky, Z., and Minor, W. (1997). Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307-326. https://doi.org/10.1016/S0076-6879(97)76066-X
  30. Petersen, T.N., Brunak, S., von Heijne, G., and Nielsen, H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785-786. https://doi.org/10.1038/nmeth.1701
  31. Ren, G., Stephan, D., Xu, Z., Zheng, Y., Tang, D., Harrison, R.S., Kurz, M., Jarrott, R., Shouldice, S.R., Hiniker, A., et al. (2009). Properties of the thioredoxin fold superfamily are modulated by a single amino acid residue. J. Biol. Chem. 284, 10150-10159. https://doi.org/10.1074/jbc.M809509200
  32. Rice, L.M., Earnest, T.N., and Brunger, A.T. (2000). Singlewavelength anomalous diffraction phasing revisited. Acta Crystallogr. D. Biol. Crystallogr. 56, 1413-1420. https://doi.org/10.1107/S0907444900010039
  33. Saleh, M., Bartual, S.G., Abdullah, M.R., Jensch, I., Asmat, T.M., Petruschka, L., Pribyl, T., Gellert, M., Lillig, C.H., Antelmann, H., et al. (2013). Molecular architecture of Streptococcus pneumoniae surface thioredoxin-fold lipoproteins crucial for extracellular oxidative stress resistance and maintenance of virulence. EMBO Mol. Med. 5, 1852-1870. https://doi.org/10.1002/emmm.201202435
  34. Sarvas, M., Harwood, C.R., Bron, S., and van Dijl, J.M. (2004). Post-translocational folding of secretory proteins in Grampositive bacteria. Biochim. Biophys. Acta 1694, 311-327.
  35. Shouldice, S.R., Heras, B., Walden, P.M., Totsika, M., Schembri, M.A., and Martin, J.L. (2011). Structure and function of DsbA, a key bacterial oxidative folding catalyst. Antioxid. Redox Signal. 14, 1729-1760. https://doi.org/10.1089/ars.2010.3344
  36. Stein, T. (2005). Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56, 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  37. White, C., Lee, J., Kambe, T., Fritsche, K., and Petris, M.J. (2009). A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J. Biol. Chem. 284, 33949-33956. https://doi.org/10.1074/jbc.M109.070201
  38. Wolschendorf, F., Ackart, D., Shrestha, T.B., Hascall-Dove, L., Nolan, S., Lamichhane, G., Wang, Y., Bossmann, S.H., Basaraba, R.J., and Niederweis, M. (2011). Copper resistance is essential for virulence of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 108, 1621-1626. https://doi.org/10.1073/pnas.1009261108
  39. Yoon, B.Y., Kim, Y.H., Kim, N., Yun, B.Y., Kim, J.S., Lee, J.H., Cho, H.S., Lee, K., and Ha, N.C. (2013). Structure of the periplasmic copper-binding protein CueP from Salmonella enterica serovar Typhimurium. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 69, 1867-1875. https://doi.org/10.1107/S090744491301531X
  40. Yoon, B.Y., Kim, J.S., Um, S.H., Jo, I., Yoo, J.W., Lee, K., Kim, Y.H., and Ha, N.C. (2014a). Periplasmic disulfide isomerase DsbC is involved in the reduction of copper binding protein CueP from Salmonella enterica serovar Typhimurium. Biochem. Biophys. Res. Commun. 446, 971-976. https://doi.org/10.1016/j.bbrc.2014.03.043
  41. Yoon, B.Y., Yeom, J.H., Kim, J.S., Um, S.H., Jo, I., Lee, K., Kim, Y.H., and Ha, N.C. (2014b). Direct ROS Scavenging Activity of CueP from Salmonella enterica serovar Typhimurium. Mol. Cells 37, 100-108. https://doi.org/10.14348/molcells.2014.2238
  42. Yun, B.Y., Piao, S., Kim, Y.G., Moon, H.R., Choi, E.J., Kim, Y.O., Nam, B.H., Lee, S.J., and Ha, N.C. (2011). Crystallization and preliminary X-ray crystallographic analysis of Salmonella Typhimurium CueP. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 67, 675-677. https://doi.org/10.1107/S1744309111010645

Cited by

  1. Thiol-Disulfide Exchange in Gram-Positive Firmicutes vol.24, pp.11, 2016, https://doi.org/10.1016/j.tim.2016.06.010
  2. Disulfide Bonds: A Key Modification in Bacterial Extracytoplasmic Proteins 2017, https://doi.org/10.1177/0022034517725059
  3. Identification of Redox Partners of the Thiol-Disulfide Oxidoreductase SdbA in Streptococcus gordonii vol.201, pp.10, 2015, https://doi.org/10.1128/jb.00030-19