DOI QR코드

DOI QR Code

Tubulin Beta3 Serves as a Target of HDAC3 and Mediates Resistance to Microtubule-Targeting Drugs

  • Kim, Youngmi (Department of Biochemistry, College of Natural Sciences, Kangwon National University) ;
  • Kim, Hyuna (Department of Biochemistry, College of Natural Sciences, Kangwon National University) ;
  • Jeoung, Dooil (Department of Biochemistry, College of Natural Sciences, Kangwon National University)
  • Received : 2015.03.31
  • Accepted : 2015.06.03
  • Published : 2015.08.31

Abstract

We investigated the role of HDAC3 in anti-cancer drug-resistance. The expression of HDAC3 was decreased in cancer cell lines resistant to anti-cancer drugs such as celastrol and taxol. HDAC3 conferred sensitivity to these anti-cancer drugs. HDAC3 activity was necessary for conferring sensitivity to these anti-cancer drugs. The down-regulation of HDAC3 increased the expression of MDR1 and conferred resistance to anti-cancer drugs. The expression of tubulin ${\beta}3$ was increased in drug-resistant cancer cell lines. ChIP assays showed the binding of HDAC3 to the promoter sequences of tubulin ${\beta}3$ and HDAC6. HDAC6 showed an interaction with tubulin ${\beta}3$. HDAC3 had a negative regulatory role in the expression of tubulin ${\beta}3$ and HDAC6. The down-regulation of HDAC6 decreased the expression of MDR1 and tubulin ${\beta}3$, but did not affect HDAC3 expression. The down-regulation of HDAC6 conferred sensitivity to taxol. The down-regulation of tubulin ${\beta}3$ did not affect the expression of HDAC6 or MDR1. The down-regulation of tubulin ${\beta}3$ conferred sensitivity to anti-cancer drugs. Our results showed that tubulin ${\beta}3$ serves as a downstream target of HDAC3 and mediates resistance to microtubule-targeting drugs. Thus, the HDAC3-HDAC6-Tubulin ${\beta}$ axis can be employed for the development of anti-cancer drugs.

Keywords

References

  1. Akiyama, K., Ohga, N., Hida, Y., Kawamoto, T., Sadamoto, Y., Ishikawa, S., Maishi, N., Akino, T., Kondoh, M., Matsuda, A., et al. (2012). Tumor endothelial cells acquire drug resistance by MDR1 up-regulation via VEGF signaling in tumor microenvironment. Am. J. Pathol. 180, 1283-1293. https://doi.org/10.1016/j.ajpath.2011.11.029
  2. Bonet, C., Giuliano, S., Ohanna, M., Bille, K., Allegra, M., Lacour, J.P., Bahadoran, P., Rocchi, S., Ballotti, R., and Bertolotto, C. (2012). Aurora B is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells. J. Biol. Chem. 287, 29887-29898. https://doi.org/10.1074/jbc.M112.371682
  3. Chae, S., Kim, Y.B., Lee, J.S., and Cho, H. (2012). Resistance to paclitaxel in hepatoma cells is related to static JNK activation and prohibition into entry of mitosis. Am. J. Physiol. Gastrointest. Liver Physiol. 302, 1016-1024. https://doi.org/10.1152/ajpgi.00449.2011
  4. Chen, L.F., Fischle, W., Verdin, E., and Greene, W.C. (2001). Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293, 1653-1657. https://doi.org/10.1126/science.1062374
  5. Cittelly, D.M., Dimitrova, I., Howe, E.N., Cochrane, D.R., Jean, A., Spoelstra, N.S., Post, M.D., Lu, X., Broaddus, R.R., Spillman, M.A., et al. (2012). Restoration of miR-200c to ovarian cancer reduces tumor burden and increases sensitivity to paclitaxel. Mol. Cancer Ther. 11, 2556-2565. https://doi.org/10.1158/1535-7163.MCT-12-0463
  6. Du, L., Subauste, M.C., DeSevo, C., Zhao, Z., Baker, M., Borkowski, R., Schageman, J.J., Greer, R., Yang, C.R., Suraokar, M., et al. (2012). miR-337-3p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers. PLoS One 7, e39167. https://doi.org/10.1371/journal.pone.0039167
  7. Fadri-Moskwik, M., Weiderhold, K.N., Deeraksa, A., Chuang, C., Pan, J., Lin, S.H., and Yu-Lee, L.Y. (2012). Aurora B is regulated by acetylation/deacetylation during mitosis in prostate cancer cells. FASEB J. 26, 4057-4067. https://doi.org/10.1096/fj.12-206656
  8. Fujita, Y., Kojima, K., Ohhashi, R., Hamada, N., Nozawa, Y., Kitamoto, A., Sato, A., Kondo, S., Kojima, T., Deguchi, T., et al. (2010). MiR-148a attenuates paclitaxel resistance of hormonerefractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J. Biol. Chem. 285, 19076-19084. https://doi.org/10.1074/jbc.M109.079525
  9. Gao, Y.S., Hubbert, C.C., and Yao, T.P. (2010). The microtubuleassociated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J. Biol. Chem. 285, 11219-11226. https://doi.org/10.1074/jbc.M109.042754
  10. Hei, C., Cheung, A., Wu, S.Y., Lee, T.R., Chang, C.Y., Wu, J.S., Hsieh, H.P., and Chang, J.Y. (2010). Cancer cells acquire mitotic drug resistance properties through beta I-tubulin mutations and alterations in the expression of beta-tubulin isotypes. PLoS One 5, e12564. https://doi.org/10.1371/journal.pone.0012564
  11. Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X.F., and Yao, T.P. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458. https://doi.org/10.1038/417455a
  12. Ishii, S., Kurasawa, Y., Wong, J., and Yu-Lee, L.Y. (2008). Histone deacetylase 3 localizes to the mitotic spindle and is required for kinetochore-microtubule attachment. Proc. Natl. Acad. Sci. USA 105, 4179-4184. https://doi.org/10.1073/pnas.0710140105
  13. Kaluza, D., Kroll, J., Gesierich, S., Yao, T.P., Boon, R.A., Hergenreider, E., Tjwa, M., Rössig, L., Seto, E., Augustin, H.G., et al. (2011). Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J. 30, 4142-4156. https://doi.org/10.1038/emboj.2011.298
  14. Kamath, K., Wilson, L., Cabral, F., and Jordan, M.A. (2005). BetaIIItubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J. Biol. Chem. 280, 12902-12907. https://doi.org/10.1074/jbc.M414477200
  15. Kavallaris, M., Kuo, D.Y., Burkhart, C.A., Regl, D.L., Norris, M.D., Haber, M., and Horwitz, S.B. (1997). Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J. Clin. Invest. 100, 1282-1293. https://doi.org/10.1172/JCI119642
  16. Kim, H.C., Choi, K.C., Choi, H.K., Kang, H.B., Kim, M.J., Lee, Y.H., Lee, O.H., Lee, J., Kim, Y.J., Jun, W., et al. (2010a). HDAC3 selectively represses CREB3-mediated transcription and migration of metastatic breast cancer cells. Cell. Mol. Life Sci. 67, 3499-3510. https://doi.org/10.1007/s00018-010-0388-5
  17. Kim, Y., Park, H., Park, D., Lee, Y.S., Choe, J., Hahn, J.H., Lee, H., Kim, Y.M., and Jeoung, D. (2010b). Cancer/testis antigen CAGE exerts negative regulation on p53 expression through HDAC2 and confers resistance to anti-cancer drugs. J. Biol. Chem. 285, 25957-25968. https://doi.org/10.1074/jbc.M109.095950
  18. Levallet, G., Bergot, E., Antoine, M., Creveuil, C., Santos, A.O., Beau-Faller, M., de Fraipont, F., Brambilla, E., Levallet, J., Morin, F., et al. (2012). High TUBB3 expression, an independent prognostic marker in patients with early non-small cell lung cancer treated by preoperative chemotherapy, is regulated by K-Ras signaling pathway. Mol. Cancer Ther. 11, 1203-1213. https://doi.org/10.1158/1535-7163.MCT-11-0899
  19. Li, J., Wang, J., Wang, J., Nawaz, Z., Liu, J.M., Qin, J., and Wong, J. (2000). Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J. 19, 4342-4350. https://doi.org/10.1093/emboj/19.16.4342
  20. Lv, K., Liu, L., Wang, L., Yu, J., Liu, X., Cheng, Y., Dong, M., Teng, R., Wu, L., Fu, P., et al. (2012). Lin28 mediates paclitaxel resistance by modulating p21, Rb and Let-7a miRNA in breast cancer cells. PLoS One 7, e40008. https://doi.org/10.1371/journal.pone.0040008
  21. Mahlknecht, U., Emiliani, S., Najfeld, V., Young, S, and Verdin, E. (1999). Genomic organization and chromosomal localization of the human histone deacetylase 3 gene. Genomics 56. 197-202. https://doi.org/10.1006/geno.1998.5645
  22. Mahlknecht, U., Will, J., Varin, A., Hoelzer, D., and Herbein, G. (2004). Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression. J. Immunol. 173, 3979-3990. https://doi.org/10.4049/jimmunol.173.6.3979
  23. Mechetner, E., Kyshtoobayeva, A., Zonis, S., Kim, H., Stroup, R., Garcia, R., Parker, R.J., and Fruehauf, J.P. (1998) Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin. Cancer Res. 4, 389-398.
  24. Namdar, M., Perez, G., Ngo, L., Paul, A., and Marks, P.A. (2010). Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc. Natl. Acad. Sci. USA 107, 20003-20008. https://doi.org/10.1073/pnas.1013754107
  25. Ott, P.A., Chang, J., Madden, K., Kannan, R., Muren, C., Escano, C., Cheng, X., Shao, Y., Mendoza, S., Gandhi, A., et al. (2013). Oblimersen in combination with temozolomide and albuminbound paclitaxel in patients with advanced melanoma: a phase I trial. Cancer Chemother. Pharmacol. 71, 183-191. https://doi.org/10.1007/s00280-012-1995-7
  26. Owonikoko, T.K., Ramalingam, S.S., Kanterewicz, B., Balius, T., Belani, C.P., and Hershberger, P.A. (2010). Vorinostat increases carboplatin and paclitaxel activity in non-small cell lung cancer cells. Int. J. Cancer 126, 743-755. https://doi.org/10.1002/ijc.24759
  27. Patel, N., Chatterjee, S.K., Vrbanac, V., Chung, I., Mu, C.J., Olsen, R.R., Waghorne, C., and Zetter, B.R. (2010). Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells Proc. Natl. Acad. Sci. USA 107, 2503-2508. https://doi.org/10.1073/pnas.0910649107
  28. Seve, P., Reiman, T., and Dumontet, C. (2010). The role of betaIII tubulin in predicting chemoresistance in non-small cell lung cancer. Lung Cancer 67, 136-143. https://doi.org/10.1016/j.lungcan.2009.09.007
  29. Takakura, Y., Hinoi, T., Oue, N., Sasada, T., Kawaguchi, Y., Okajima, M., Akyol, A., Fearon, E.R., Yasui, W., and Ohdan, H. (2010). CDX2 regulates Multidrug Resistance 1 gene expression in malignant intestinal epithelium. Cancer Res. 70, 6767-6778. https://doi.org/10.1158/0008-5472.CAN-09-4701
  30. Verdier-Pinard, P., Wang, F., Martello, L., Burd, B., Orr, G.A., and Horwitz, S.B. (2003). Analysis of tubulin isotypes and mutations from taxol-resistant cells by combined isoelectrofocusing and mass spectrometry. Biochemistry 42, 5349-5357. https://doi.org/10.1021/bi027293o
  31. Wang, L., Xiang, S., Williams, K.A., Dong, H., Bai, W., Nicosia, S.V., Khochbin, S., Bepler, G., and Zhang, X. (2012). Depletion of HDAC6 enhances cisplatin-induced DNA damage and apoptosis in non-small cell lung cancer cells. PLoS One 7, e44265. https://doi.org/10.1371/journal.pone.0044265
  32. Xie, H., Lee, M.H., Zhu, F., Reddy, K., Peng, C., Li, Y., Lim do, Y., Kim, D.J., Li, X., Kang, S., et al. (2013). Identification of an Aurora kinase inhibitor specific for the Aurora B isoform. Cancer Res. 73, 716-724. https://doi.org/10.1158/0008-5472.CAN-12-2784
  33. Xu, R., Sato, N., Yanai, K., Akiyoshi, T., Nagai, S., Wada, J., Koga, K., Mibu, R., Nakamura, M., and Katano, M. (2009). Enhancement of paclitaxel-induced apoptosis by inhibition of mitogenactivated protein kinase pathway in colon cancer cells. Anticancer Res. 29, 261-270.
  34. Xu, R., Nakano, K., Iwasaki, H., Kumagai, M., Wakabayashi, R., Yamasaki, A., Suzuki, H., Mibu, R., Onishi, H., and Katano, M. (2011). Dual blockade of phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways overcomes paclitaxelresistance in colorectal cancer. Cancer Lett. 306, 151-160. https://doi.org/10.1016/j.canlet.2011.02.042
  35. Yan, L.H., Wang, X.T., Yang, J., Lian, C., Kong, F.B., Wei, W.Y., Luo, W., Xiao, Q., and Xie, Y.B. (2013). Reversal of multidrug resistance in gastric cancer cells by CDX2 downregulation. World J. Gastroenterol. 19, 4155-4165. https://doi.org/10.3748/wjg.v19.i26.4155
  36. Yao, Y.L., Yang, W.M., and Seto, E. (2001). Regulation of transcription factor YY1 by acetylation and deacetylation. Mol. Cell Biol. 21, 5979-5991. https://doi.org/10.1128/MCB.21.17.5979-5991.2001
  37. Yin, S., Bhattacharya, R., and Cabral, F. (2010). Human mutations that confer paclitaxel resistance. Mol. Cancer Ther. 9, 327. https://doi.org/10.1158/1535-7163.MCT-09-0674
  38. Zhang, J., Kalkum, M., Chait, B.T., and Roeder, R.G. (2002). The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol. Cell 9, 611-623. https://doi.org/10.1016/S1097-2765(02)00468-9
  39. Zhang, Y., Li, N., Caron, C., Matthias, G., Hess, D., Khochbin, S., and Matthias, P. (2003). HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22, 1168-1179. https://doi.org/10.1093/emboj/cdg115
  40. Zhang, X., Ozawa, Y., Lee, H., Wen, Y.D., Tan,T.H., Wadzinski, B.E., and Seto, E. (2005). Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev. 19, 827-839. https://doi.org/10.1101/gad.1286005

Cited by

  1. Roles of tumor heterogeneity in the development of drug resistance: A call for precision therapy vol.42, 2017, https://doi.org/10.1016/j.semcancer.2016.11.006
  2. Histone Deacetylase-3/CAGE Axis Targets EGFR Signaling and Regulates the Response to Anti-Cancer Drugs vol.39, pp.3, 2016, https://doi.org/10.14348/molcells.2016.2244
  3. Expression of Twist2 is controlled by T-cell receptor signaling and determines the survival and death of thymocytes vol.23, pp.11, 2016, https://doi.org/10.1038/cdd.2016.68
  4. Dual PI3K/mTOR inhibitor BEZ235 as a promising therapeutic strategy against paclitaxel-resistant gastric cancer via targeting PI3K/Akt/mTOR pathway vol.9, pp.2, 2018, https://doi.org/10.1038/s41419-017-0132-2
  5. Role of HDAC3-miRNA-CAGE Network in Anti-Cancer Drug-Resistance vol.20, pp.1, 2015, https://doi.org/10.3390/ijms20010051
  6. Histone Deacetylase Inhibitors to Overcome Resistance to Targeted and Immuno Therapy in Metastatic Melanoma vol.8, pp.None, 2015, https://doi.org/10.3389/fcell.2020.00486
  7. Epigenetic Regulation of Multidrug Resistance Protein 1 and Breast Cancer Resistance Protein Transporters by Histone Deacetylase Inhibition vol.48, pp.6, 2015, https://doi.org/10.1124/dmd.119.089953