• Title/Summary/Keyword: tubulin beta 3

Search Result 103, Processing Time 0.03 seconds

Tubulin Beta3 Serves as a Target of HDAC3 and Mediates Resistance to Microtubule-Targeting Drugs

  • Kim, Youngmi;Kim, Hyuna;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.705-714
    • /
    • 2015
  • We investigated the role of HDAC3 in anti-cancer drug-resistance. The expression of HDAC3 was decreased in cancer cell lines resistant to anti-cancer drugs such as celastrol and taxol. HDAC3 conferred sensitivity to these anti-cancer drugs. HDAC3 activity was necessary for conferring sensitivity to these anti-cancer drugs. The down-regulation of HDAC3 increased the expression of MDR1 and conferred resistance to anti-cancer drugs. The expression of tubulin ${\beta}3$ was increased in drug-resistant cancer cell lines. ChIP assays showed the binding of HDAC3 to the promoter sequences of tubulin ${\beta}3$ and HDAC6. HDAC6 showed an interaction with tubulin ${\beta}3$. HDAC3 had a negative regulatory role in the expression of tubulin ${\beta}3$ and HDAC6. The down-regulation of HDAC6 decreased the expression of MDR1 and tubulin ${\beta}3$, but did not affect HDAC3 expression. The down-regulation of HDAC6 conferred sensitivity to taxol. The down-regulation of tubulin ${\beta}3$ did not affect the expression of HDAC6 or MDR1. The down-regulation of tubulin ${\beta}3$ conferred sensitivity to anti-cancer drugs. Our results showed that tubulin ${\beta}3$ serves as a downstream target of HDAC3 and mediates resistance to microtubule-targeting drugs. Thus, the HDAC3-HDAC6-Tubulin ${\beta}$ axis can be employed for the development of anti-cancer drugs.

Isolation and Sequencing of the cDNA Encoding ${\beta}-tubulin$ from Pleurotus sajor-caju (여름느타리버섯으로부터 ${\beta}-tubulin$ cDNA의 분리 및 염기서열 결정)

  • Kim, Beom-Gi;Shin, Pyung-Gyun;Jeong, Mi-Jeong;Park, Soo-Chul;Yoo, Young-Bok;Ryu, Jin-Chang;Kwon, Suk-Tae
    • The Korean Journal of Mycology
    • /
    • v.25 no.1 s.80
    • /
    • pp.1-5
    • /
    • 1997
  • The cDNA encoding ${\beta}-tubulin$ of Pleurotus sajor-caju was isolated using an internal gene segment probe amplified by polymerase chain reaction (PCR) of genomic DNA and by cDNA library screening. The cDNA was consisted of 1560 nucleotides(nt), including a 5'-untranslation region (UTR) of 27nt, an open reading frame (ORF) of 1341nt, and a 3'-UTR of 191nt. The ORF encoded a protein of 446 amino acids(aa), which shows over 80% homology with ${\beta}-tubulins$ of other filamentous fungi. Southern hybridization analysis showed that there were two isotypes of ${\beta}-tubulin$ genes in P. sajor-caju. Through sequence analysis we found that ${\beta}-tubulin$ had a unusual $Cys^{165}$ residue, which might be a significant factor for the insensitivity of fungi to fungicide benomyl.

  • PDF

Bombyx mori β-tubulin Promoter for High-level Expression of Heterologous Genes

  • Park, Kwanho;Goo, Tae-Won
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.39 no.1
    • /
    • pp.22-28
    • /
    • 2019
  • We previously isolated 9 clones that show stronger signal compared to Bombyx mori cytoplasmic actin gene (BmA3) by using a dot blot hybridization. In this study, we focused on one clone among these clones which has high amino acid similarity with ${\beta}$-tubulin gene of B. mori. This clone was ubiquitously expressed in all tissues and developmental stage of B. mori. As result of promoter assay using dual luciferase assay system, we found the highest transcription activity region (-750/-1) in the 5'-flanking region of ${\beta}$-tubulin gene, which has about 47 fold more intensive promoter activity than BmA3 promoter. Moreover, the ${\beta}$-tubulin promoter was normally regulated in Bm5, Sf9, and S2 cells. Therefore, we suggest that ${\beta}$-tubulin promoter may be used more powerful and effectively for transgene expression in various insects containing B. mori as a universal promoter.

Genotypic Characterization of Oak Wilt Pathogen Raffaelea quercus-mongolicae and R. quercivora Strains (참나무류에 시들음병을 일으키는 Raffaelea quercus-mongolicae와 R. quercivora의 유전적 특성)

  • Seo, Sang-Tae;Kim, Kyung-Hee;Lee, Sang-Hyun;Kwon, Yong-Nam;Shin, Chang-Hoon;Kim, Hye-Jeong;Lee, Sang-Yong
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.219-223
    • /
    • 2010
  • Recently, the oak wilt diseases especially on Quercus mongolica, have been increasing in various districts of Korea. A collection of 38 strains of the oak wilt pathogen Raffaelea qeurcus-mongolicae and R. quecivora isolated from Quercus spp. in Korea and Japan was characterized by $\beta$-tubulin gene sequence and randomly amplified polymorphic DNA (RAPD) analysis. In cluster analysis based on $\beta$-tubulin gene sequence the strains were divided into 4 clusters, of which clusters 2 and 4 were composed of Japanese strains except for one Korean strain. RAPD analysis showed that they were also effectively differentiated by a strong RAPD fragments. On the basis of the two genetic analysis, significant differences were detected between Korean strains and Japanese strains.

Phospholipase C-γ Activation by Direct Interaction with β-Tubulin Isotypes (베타 튜불린에 의한 포스포리파제 C-감마1의 활성화)

  • Lee, In-Bum;Kim, Sung-Kuk;Choi, Jang-Hyun;Suh, Pann-Ghill;Chang, Jong-Soo
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.612-617
    • /
    • 2006
  • Phosphoinositide-specific phospholipase $C-{\gamma}\;1\; (PLC-{\gamma}\;1)$ has pivotal roles in cellular signaling by producing second messengers, inositol 1,4,5-trisphosphate $(IP_3)$ and diacylglycerol (DG). Tubulin is a main component of microtubules and mitotic spindle fibers, which are composed of ${\alpha}-$ and ${\beta}-tubulin$ heterodimers in all eukaryotic cells. In humans, six ${\beta}-tubulin$ isotypes have been identified which display a distinct pattern of tissue expression. Previously we found that $PLC-{\gamma}\;1$ and one of four ${\beta}-tubulin$ isotypes including ${\beta}1$, ${\beta}2$, ${\beta}3$ and ${\beta}6$, colocalized in COS-7 cells and cotranslocated to the plasma membrane to activate $PLC-{\gamma}\;1$ upon agonist stimulation. In the present study, we demonstrate that the remaining two, tubulin ${\beta}4$ and ${\beta}5$, also showed a potential to activate $PLC-{\gamma}\;1$. The phosphatidylinositol 4,5-bisphosphate $(PIP_2)$ hydrolyzing activity of $PLC-{\gamma}\;1$ was substantially increased in the presence of purified ${\beta}4$ and ${\beta}5$ tubulin in vitro, whereas the activity was not promoted by bovine serum albumin, suggesting that tubulin ${\beta}4$ and ${\beta}5$ also activate $PLC-{\gamma}\;1$. Taken together, our results suggest that all the ${\beta}-tubulin$ isotype activates $PLC-{\gamma}\;1$ activity to regulate cellular signaling.

The First Report of Penicillium georgiense in Malaysia

  • Yee, Teh Li;Zakaria, Latiffah
    • Mycobiology
    • /
    • v.42 no.3
    • /
    • pp.274-278
    • /
    • 2014
  • Penicillium georgiense was isolated from sandy beach soil from Batu Ferringhi beach, Penang Island, Malaysia. The identification was based on morphological characteristics and phylogenetic analysis of internal transcribed spacer regions and ${\beta}$-tubulin sequences. To the best of our knowledge, this is the first report of P. georgiense in Malaysia.

Comparison of DNase activities from excretory/secretory productsof Haemonchus contortus fenbendazole-resistantand -susceptible isolates (Fenbendazole에 저항성과 감수성을 지닌 염전위충의 분비배설물에서의 DNase 활성 비료)

  • Kwak, Dongmi
    • Korean Journal of Veterinary Research
    • /
    • v.44 no.3
    • /
    • pp.455-462
    • /
    • 2004
  • Change in ${\beta}$-tubulin nucleic acid and protein sequences was the only known difference between Haemonchus contortus fenbendazole (FBZ)-resistant and -susceptible isolates. This change was sufficient to determine the pathologic effect induced by FBZ treatment. This research was initiated to investigate further differences from these two isolates. Since ${\beta}$-tubulin is involved in formation of microtubule, which has functions in secretory vesicle transport, DNase activities from excretory/secretory products (ESP) of the two isolates were compared, based on pH, sensitivity to DNase inhibitors, molecular masses and production of 3'-OH. The most significant difference detected was that a 38.5 kDa DNase activity was identified from ESP of H. contortus FBZ-susceptible isolates but not from those of H. contortus FBZ-resistant isolates. However, it was shown that the 38.5 kDa DNase is expressed with similar level of activity in intestine and whole worm of H. contortus FBZ-resistant and -susceptible isolates. This result demonstrated that the secretory transport pathway of the 38.5 kDa DNase was inhibited by unknown mechanisms, which may be related with ${\beta}$-tubulin sequence change in FBZ-resistant isolates. Other DNases of 34, 36 and 37 kDa were detected from ESP of both H. contortus FBZ-resistant and -susceptible isolates. Overall DNase activities found from ESP of these two isolates were not inhibited by 10 mM EDTA at pH 5.0, but largely inhibited by pH 7.0. In addition, DNase activities in two isolates produced DNA fragments with mixtures of 3'- hydroxyls (OH) and 3'-phosphates (P) at each pH although the 3'-end labeling ratios at pH 5.0 and 7.0 were shown different. Identification of inhibition of the 38.5 kDa DNase secretion in FBZ-resistant isolates suggests existence of further differences, in addition to ${\beta}$-tubulin sequence change, in two isolates. This shows complex effect of FBZ on H. contortus biological mechanisms.

Evaluation of ${\alpha}$-Tubulin as an Antigenic and Molecular Probe to Detect Giardia lamblia

  • Kim, Ju-Ri;Shin, Myeong-Heon;Song, Kyoung-Ju;Park, Soon-Jung
    • Parasites, Hosts and Diseases
    • /
    • v.47 no.3
    • /
    • pp.287-291
    • /
    • 2009
  • The ${\alpha}/{\beta}$-tubulin heterodimer is the basic subunit of microtubules in eukaryotes. Polyclonal antibodies specific to recombinant ${\alpha}$-tubulin of Giardia lamblia were made, and found effective as a probe to specifically detect G. lamblia by immunofluorescence assays. Nucleotide sequences of ${\alpha}$-tubulin genes were compared between G. lamblia WB and GS strains, prototypes of assemblage A and assemblage B, respectively. A set of primers was designed and used to amplify a portion of the ${\alpha}$-tubulin gene from G. lamblia. PCR-RFLP analysis of this ${\alpha}$-tubulin PCR product successfully differentiated G. lamblia into 2 distinct groups, assemblages A and B.Theresults indicate that ${\alpha}$-tubulin can be used as a molecular probe to detect G.lamblia.

The Carboxyl-terminal Tail of a Heterotrimeric Kinesin 2 Motor Subunit Directly Binds to β2-tubulin (Heterotrimeric Kinesin 2 모터 단백질의 Carboxyl-말단과 β2-tubulin의 결합)

  • Jeong, Young Joo;Park, Sung Woo;Kim, Sang-Jin;Lee, Won Hee;Kim, Mooseong;Urm, Sang-Hwa;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.369-375
    • /
    • 2019
  • Microtubules form through the polymerization of ${\alpha}-$ and ${\beta}-tubulin$, and tubulin transport plays an important role in defining the rate of microtubule growth inside cellular appendages, such as the cilia and flagella. Heterotrimeric kinesin 2 is a molecular motor member of the kinesin superfamily (KIF) that moves along the microtubules to transport multiple cargoes. It consists of two motor subunits (KIF3A and KIF3B) and a kinesin-associated protein 3 (KAP3), forming a heterotrimeric complex. Heterotrimeric kinesin 2 interacts with many different binding proteins through the cargo-binding domains of the KIF3s, but these binding proteins have not yet been specified. To identify these proteins for KIF3A, we performed yeast two-hybrid (Y2H) screening and found a specific interaction with ${\beta}2-tubulin$ (Tubb2), a microtubule component. Tubb2 was found to bind to the cargo-binding domain of KIF3A but did not interact with KIF3B, KIF5B, or kinesin light chain 1 in the Y2H assay. The carboxyl-terminal region of Tubb2 is essential for interaction with KIF3A. Other Tubb isoforms, including Tubb1, Tubb3, Tubb4, and Tubb5, also interacted with KIF3A in the Y2H screening. However, ${\alpha}1-tubulin$ (Tuba1) did not interact with KIF3A. In addition, an antibody to KIF3A specifically co-immunoprecipitated the KIF3B and KAP3 associated with Tubb2 from mouse brain extracts. In combination, these results suggest that a heterotrimeric kinesin 2 motor protein is capable of binding to tubulin and may transport it in cells.

Relationship of Resistance to Benzimidazole Fungicides with Mutation of β-Tubulin Gene in Venturia nashicola (Benzimidazole계 살균제에 대한 배 검은별무늬병균 Venturia nashicola 의 저항성과 β-Tubulin 유전자 돌연변이와의 관계)

  • Kwak, Yeonsoo;Min, Jiyoung;Song, Janghoon;Kim, Myeongsoo;Lee, Hanchan;Kim, Heung Tae
    • Research in Plant Disease
    • /
    • v.23 no.2
    • /
    • pp.150-158
    • /
    • 2017
  • Pear scab caused by Venturia nashicola has been reported as an important disease of pear resulting in lowering the quality of pear fruits. In this study, it was conducted to investigate the relationship between resistance of V. nashicola and mutation of ${\beta}$-tubulin gene and the fungicide resistance in field isolate group in benzimidazole fungicides. Responce of V. nashicola to carbendazim could be classified into 3 groups as sensitive that does not grow at all on PDA amended with $0.16{\mu}g/ml$ of carbendazim, low resistance that could not grow in $4.0{\mu}g/ml$ medium, and high resistance that can grow even at $100{\mu}g/ml$. Thirty isolates of V. nashicola collected from 3 regions as Wonju, Naju, and Okcheon were highly resistant to carbendazim. Analysis of the nucleotide sequence of ${\beta}$-tubulin gene of V. nashicola showed that there was no difference in the nucleotide sequence between the sensitive and the low-resistant isolate, but GAG at codon 198 (glutamic acid) was replaced with GCG (alanine) in the high-resistant isolate. Among 10 isolates obtained from the Okcheon, 5 isolates showed the substitution of glycine for glutamic acid, which were resistant to carbendazim, but more sensitive to the mixture of carbendazim and diethofencarb than others. Through these results, all isolates of V. nashicola isolated in pear orchard were found to be resistant to benzimidazoles. Also, mutants E198A and E198G at ${\beta}$-tubulin were found to be important mechanisms of V. nashicola resistance against benzimidazole fungicides.