• Title/Summary/Keyword: Thin-walled

Search Result 702, Processing Time 0.026 seconds

Vibration and Stability of Composite Thin-Walled Spinning Shaft (복합재료 회전축의 진동 특성 및 안정성 해석)

  • Yoon, Hyung-Won;Na, Sung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.1083-1088
    • /
    • 2004
  • This paper deals with the vibration and stability of a circular cylindrical shaft, modeled as a tapered thin-walled composite beam and spinning with constant angular speed about its longitudinal axis, and subjected to an axial compressive force. Hamilton's principle and the assumed mode method are employed to derive the governing equations of motion. The resulting eigenvalue problem is analyzed, and the stability boundaries are presented for selected taper ratios and axial compressive force combinations. Taking into account the directionality property of fiber reinforced composite materials, it is shown that for a shaft featuring flapwise-chordwise-bending coupling, a dramatic enhancement of both the vibration and stability behavior can be reached. It is found that by the structural tailoring and tapering, bending natural frequencies, stiffness and stability region can be significantly increased over those of uniform shafts made of the same material. In addition, the particular case of a classical beam with internal damping effect is also included.

  • PDF

Shear center for elastic thin-walled composite beams

  • Pollock, Gerry D.;Zak, Adam R.;Hilton, Harry H.;Ahmad, M. Fouad
    • Structural Engineering and Mechanics
    • /
    • v.3 no.1
    • /
    • pp.91-103
    • /
    • 1995
  • An analysis to determine shear centers for anisotropic elastic thin-walled composite beams, cantilevered and loaded transversely at the free end is presented. The shear center is formulated based on familiar strength of material procedures analogous to those for isotropic beams. These procedures call for a balancing of torsional moments on the cross sectional surface and lead to a condition of zero resultant torsional couple. As a consequence, due the presence of anisotropic coupling, certain non-classical effects are manifested and are illustrated in two example problems. The most distinguishing result is that twisting may occur for composite beams even if shear forces are applied at the shear center. The derived shear center locations do not depend on any specific anisotropic bending theories per se, but only on the values of bending and shear stresses which such theories produce.

Transverse Shear Behavior of Thin-Walled Composite Beams with Closed Cross-Sections (폐쇄형 단면을 갖는 박벽 복합재료 보의 전단변형 거동 해석)

  • Park, Il-Ju;Jung, Sung-Nam
    • Composites Research
    • /
    • v.19 no.5
    • /
    • pp.1-6
    • /
    • 2006
  • In this study, a closed-form analysis has been developed for the transverse shear behavior of thin-walled composite beams with closed cross-sections. The shear flow distributions and cross-section stiffness coefficients are derived analytically by using a mixed beam approach. The theory has been applied to single-celled composite box-beams with elastic couplings. The location of the shear center and the effect of transverse shear deformation on the static behavior of composite beams are investigated in the framework of the analysis. The present results are validated against those of a two-dimensional finite element analysis and a good correlation has been obtained for box-beam cases considered in this study.

Structural Behavior of Thin-Walled, Pretwisted Composite Beams (초기 비틀림 각을 갖는 박벽 복합재료 보의 정적 거동 해석)

  • Park, Il-Ju;Hong, Dan-Bi;Jung, Sung-Nam
    • Composites Research
    • /
    • v.20 no.6
    • /
    • pp.15-20
    • /
    • 2007
  • In this work, the structural response of thin-walled, composite beams with built-in twist angles is analyzed using a mixed beam approach. The analytical model includes the effects of elastic couplings, shell wall thickness, and torsion warping. Reissner's semi-complimentary energy functional is used to describe the beam theory and also to deal with the mixed-nature in the beam kinematics. The bending and torsion related warpings introduced by the non-zero pretwist angles are derived in closed-form through the proposed beam formulation. The theory is validated with available literature and detailed finite element analysis results for rectangular solid section beams with elastic couplings. Very good correlation has been obtained for the cases considered.

Research on axial bearing capacity of cold-formed thin-walled steel built-up column with 12-limb-section

  • Wentao Qiao;Yuhuan Wang;Ruifeng Li;Dong Wang;Haiying Zhang
    • Steel and Composite Structures
    • /
    • v.47 no.3
    • /
    • pp.437-450
    • /
    • 2023
  • A half open cross section built-up column, namely cold-formed thin-walled steel built-up column with 12-limbsection (CTSBC-12) is put forward. To deeply reveal the mechanical behaviors of CTSBC-12 under axial compression and put forward its calculation formula of axial bearing capacity, based on the previous axial compression experimental research, the finite element analysis (FEA) is conducted on 9 CTSBC-12 specimens, and then the variable parameter analysis is carried out. The results show the FEA is in good agreement with the experimental research, the ultimate bearing capacity error is within 10%. When the slenderness ratio is more than 96.54, the ultimate bearing capacity of CTSBC-12 decreases rapidly, and the failure mode changes from local buckling to global buckling. With the local buckling failure mode unchanged, the ultimate bearing capacity decreases gradually as the ratio of web height to thickness increases. Three methods are used for calculating the ultimate bearing capacity, the direct strength method of AISI S100-2007 gives result of ultimate axial load which is closest to the test and FEA results. But for simplicity and practicality, a simplified axial bearing capacity formula is proposed, which has better calculation accuracy with the slenderness ratio changing from 30 to 100.

Mechanical behavior test and analysis of HEH sandwich external wall panel

  • Wu, Xiangguo;Zhang, Xuesen;Tao, Xiaokun;Yang, Ming;Yu, Qun;Qiu, Faqiang
    • Advances in concrete construction
    • /
    • v.13 no.2
    • /
    • pp.153-162
    • /
    • 2022
  • Prefabricated exterior wall panel is the main non-load-bearing component of assembly building, which affects the comprehensive performance of thermal insulation and durability of the building. It is of great significance to develop new prefabricated exterior wall panel with durable and lightweight characteristics for the development of energy-saving and assembly building. In the prefabricated sandwich insulation hanging wall panel, the selection of material for the outer layer and the arrangement of the connector of the inner and outer wall layers affect the mechanical performance and durability of the wall panels. In this paper, high performance cement-based composites (HPFRC) are used in the outer layer of the new type wall panel. FRP bars are used as the interface connector. Through experiments and analysis, the influence of the arrangement of connectors on the mechanical behaviors of thin-walled composite wall panel and the panel with window openings under two working conditions are investigated. The failure modes and the role of connectors of thin-walled composite wallboard are analyzed. The influence of the thickness of the wall layer and their combination on the strain growth of the control section, the initial crack resistance, the ultimate bearing capacity and the deformation of the wall panels are analyzed. The research work provides a technical reference for the engineering design of the light-weight thin-walled and durable composite sandwich wall panel.

Optimization and investigations of low-velocity bending impact of thin-walled beams

  • Hossein Taghipoor;Mahdi Sefidi
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.159-181
    • /
    • 2024
  • In the present study, the effect of geometrical parameters of two different types of aluminum thin-walled structures on energy absorption under three-bending impact loading has been investigated experimentally and numerically. To evaluate the effect of parameters on the specific energy absorption (SEA), initial peak crushing force (IPCF), and the maximum crushing distance (δ), a design of experiment technique (DOE) with response surface method (RSM) was applied. Four different thin-walled structures have been tested under the low-velocity impact, and then they have simulated by ABAQUS software. An acceptable consistency between the numerical and experimental results was obtained. In this study, statistical analysis has been performed on various parameters of three different types of tubes. In the first and the second statistical analysis, the dimensional parameters of the cross-section, the number of holes, and the dimensional parameter of holes were considered as the design variables. The diameter reduction rate and the number of sections with different diameters are related to the third statistical analysis. All design points of the statistical method have been simulated by the finite element package, ABAQUS/Explicit. The final result shows that the height and thickness of tubes were more effective than other geometrical parameters, and despite the fact that the deformations of the cylindrical tubes were around forty percent greater than the rectangular tubes, the top desirability was relevant to the cylindrical tubes with reduced cross-sections.

Modified Design Formula for Predicting the Ultimate Strength of High-tensile Steel Thin Plates

  • Park, Joo Shin;Seo, Jung Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.3
    • /
    • pp.447-456
    • /
    • 2021
  • Methods for predicting the ultimate/buckling strength of ship structures have been extensively improved in terms of design formulas and analytical solutions. In recent years, the design strategy of ships and offshore structures has tended to emphasize lighter builds and improve operational safety. Therefore, the corresponding geometrical changes in design necessitate the use of high-tensile steel and thin plates. However, the existing design formulas were mainly developed for thick plates and mild steels. Therefore, the calculation methods require appropriate modification for new designs beased on high-tensile steel and thin plates. In this study, a modified formula was developed to predict the ultimate strength of thin steel plates subjected to compressive and shear loads. Based on the numerical results, the effects of the yield stress, slenderness ratio, and loading condition on the buckling/ultimate strength of steel plates were examined, and a newly modified double-beta parameter formula was developed. The results were used to derive and modify existing closed-form expressions and empirical formulas to predict the ultimate strength of thin-walled steel structures.

Improved Method Evaluating the Stiffness Matrices of Thin-walled Beam on Elastic Foundations (탄성지반위에 놓인 박벽보의 강성행렬산정을 위한 개선된 해석기법)

  • Kim, Nam-Il;Jung, Sung-Yeop;Lee, Jun-Seok;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.113-125
    • /
    • 2007
  • Improved numerical method to obtain the exact stiffness matrices is newly proposed to perform the spatially coupled elastic and stability analyses of non-symmetric and open/closed thin-walled beam on elastic foundation. This method overcomes drawbacks of the previous method to evaluate the exact stiffness matrix for the spatially coupled stability analysis of thin-walled beam-column This numerical technique is accomplished via a generalized eigenproblem associated with 14 displacement parameters by transforming equilibrium equations to a set of first order simultaneous ordinary differential equations. Next polynomial expressions as trial solutions are assumed for displacement parameters corresponding to zero eigenvalues and the eigenmodes containing undetermined parameters equal to the number of zero eigenvalues are determined by invoking the identity condition. And then the exact displacement functions are constructed by combining eigensolutions and polynomial solutions corresponding to non-zero and zero eigenvalues, respectively. Consequently an exact stiffness matrix is evaluated by applying the member force-deformation relationships to these displacement functions. In order to illustrate the accuracy and the practical usefulness of this study, the numerical solutions are compared with results obtained from the thin-walled beam and shell elements.

Study on the Plastic Buckling of Thin Rectangular Tubes under Compression (압축하중을 받는 박판 4각튜브의 소성좌굴 연구)

  • Kim, C.W.;Han, B.K.;Kim, J.M.
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.357-362
    • /
    • 2000
  • In the present paper the plastic buckling of thin-walled rectangular tube is analyzed. The stress-strain relations of the plates of the tube are idealized into nonlinear material of Ramberg and Osgood. Computing elastic moduli of the nonlinear material a precise plastic buckling stress has determined. The plastic buckling stress of the wider plate of the tube is considered as the crippling strength of the tube. The present theory is in good agreement with the experiments in various thickness-width ratios and materials.

  • PDF