• Title/Summary/Keyword: Thin-film Dielectric

Search Result 1,075, Processing Time 0.032 seconds

Fabrication of Graphene p-n Junction Field Effect Transistors on Patterned Self-Assembled Monolayers/Substrate

  • Cho, Jumi;Jung, Daesung;Kim, Yooseok;Song, Wooseok;Adhikari, Prashanta Dhoj;An, Ki-Seok;Park, Chong-Yun
    • Applied Science and Convergence Technology
    • /
    • v.24 no.3
    • /
    • pp.53-59
    • /
    • 2015
  • The field-effect transistors (FETs) with a graphene-based p-n junction channel were fabricated using the patterned self-assembled monolayers (SAMs). The self-assembled 3-aminopropyltriethoxysilane (APTES) monolayer deposited on $SiO_2$/Si substrate was patterned by hydrogen plasma using selective coating poly-methylmethacrylate (PMMA) as mask. The APTES-SAMS on the $SiO_2$ surface were patterned using selective coating of PMMA. The APTES-SAMs of the region uncovered with PMMA was removed by hydrogen plasma. The graphene synthesized by thermal chemical vapor deposition was transferred onto the patterned APTES-SAM/$SiO_2$ substrate. Both p-type and n-type graphene on the patterned SAM/$SiO_2$ substrate were fabricated. The graphene-based p-n junction was studied using Raman spectroscopy and X-ray photoelectron spectroscopy. To implement low voltage operation device, via ionic liquid ($BmimPF_6$) gate dielectric material, graphene-based p-n junction field effect transistors was fabricated, showing two significant separated Dirac points as a signature for formation of a p-n junction in the graphene channel.

Characterization of Structure and Electrical Properties of $TiO_2$Thin Films Deposited by MOCVD (화학기상증착법에 의한$TiO_2$박막의 구조 및 전기적 특성에 관한 연구)

  • Choe, Sang-Jun;Lee, Yong-Ui;Jo, Hae-Seok;Kim, Hyeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.5 no.1
    • /
    • pp.3-11
    • /
    • 1995
  • $(TiO_{2})$ thin films were deposited on p-Si(100) substrate by APMOCVD using titanium isopropoxide as a source material. The deposition mechanism was well explained by the simple boundary layer theory and the apparent activation energy of the chemical reaction controlled process was 18.2kcal /mol. The asdeposited films were polycrystalline anatase phase and were transformed into rutile phase after postannealing. The postannealing time and the film thikness as well as the postannealing temperature also affected the phase transition. The C-V plot exhibited typical charateristics of MOS diode, from which the dielectric constant of about 80 was obtained. The capacitance of the annealed film was decreased but those of the Nb or Sr doped films were not changed. I-V characteristics revealed that the conduction mechanism was hopping conduction. The postannealing and the doping of Nb or Sr cause to decrease the leakage current and to increase the breakdown voltage.

  • PDF

Uncooled Pyroelectric Thin-film $(Ba,Sr)TiO_3$ Infrared Detector Thermally Isolated by Dielectric Membrane (유전체 멤브레인에 의해 열차단된 비냉각 초전형 박막 $(Ba,Sr)TiO_3$적외선 검지기)

  • Go, Seong-Yong;Jang, Cheol-Yeong;Kim, Dong-Jeon;Kim, Jin-Seop;Lee, Jae-Sin;Lee, Jeong-Hui;Han, Seok-Yong;Lee, Yong-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.229-235
    • /
    • 2001
  • Uncooled pyroelectric thin-film (Ba,Sr)TiO$_3$ infrared detectors thermally isolated from Si-substrate by Si$_3$N$_4$/SiO$_2$/Si$_3$N$_4$-membrane have been fabricated, and figures of merit for detectors were examined. The detector at $25^{\circ}C$ in air showed relatively high voltage responsivity of about 168.8 V/W and low specific detectivity of about 2.6$\times$10$^4$cm.Hz$^{1}$2//W at 1 Hz-chopping frequency because of very small signal-to-noise voltage ratio. It could be found that both thermal noise voltage and thermal time constant of the detector were very large by analyzing dependences of output waveforms on chopping frequency and temperature.

  • PDF

Preparation and Electrical Properties of $(Ba_{1-x},\;Sr_x)TiO_3$ Thin Film by Metal-Organic Chemical Vapor Deposition (유기 금속 화학 증착법에 의한 $(Ba_{1-x},\;Sr_x)TiO_3$ 박막의 제조 및 전기적 특성)

  • Yun, Jong-Guk;Yun, Sun-Gil
    • Korean Journal of Materials Research
    • /
    • v.5 no.7
    • /
    • pp.816-819
    • /
    • 1995
  • (Ba$_{1-x}$ , Sr$_{x}$)TiO/$_3$thin films on Pt/Ti/SiO$_2$/Si substrates were prepared by LP MOCVD(Low Pressure Metal-Organic Chemical Vapor Deposition). The crystalinity of BST deposit had a (100) preferred orientation with increasing deposition temperature due to surface diffusion. BST films deposited at 90$0^{\circ}C$ showed a dielectric constant of 365 and a dissipation factor of 0.052 at a frequency of 100kHz. The chance of capacitance of the films with applied voltage was small, showing paraelectric properties. BST film deposited at 90$0^{\circ}C$ had a charge storage density of 60 fc/${\mu}{\textrm}{m}$$^2$at a field of 0.2MV/cm and the leakage current density of 20 nA/$\textrm{cm}^2$ at a field of 0.15 MV/cm.cm.

  • PDF

Performance Improvement of All Solution Processable Organic Thin Film Transistors by Newly Approached High Vacuum Seasoning

  • Kim, Dong-Woo;Kim, Hyoung-Jin;Lee, Young-Uk;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.470-470
    • /
    • 2012
  • Organic thin film transistors (OTFTs) backplane constitute the active elements in new generations of plastic electronic devices for flexible display. The overall OTFTs performance is largely depended on the properties and quality of each layers of device material. In solution based process of organic semiconductors (OSCs), the interface state is most impediments to preferable performance. Generally, a threshold voltage (Vth) shift is usually exhibited when organic gate insulators (OGIs) are exposed in an ambient air condition. This phenomenon was caused by the absorbed polar components (i.e. oxygen and moisture) on the interface between OGIs and Soluble OSCs during the jetting process. For eliminating the polar component at the interface of OGI, the role of high vacuum seasoning on an OGI for all solution processable OTFTs were studied. Poly 4-vinly phenols (PVPs) were the material chosen as the organic gate dielectric, with a weakness in ambient air. The high vacuum seasoning of PVP's surface showed improved performance from non-seasoning TFT; a $V_{th}$, a ${\mu}_{fe}$ and a interface charge trap density from -8V, $0.018cm^2V^{-1}s^{-1}$, $1.12{\times}10^{-12}(cm^2eV)^{-1}$ to -4.02 V, $0.021cm^2V^{-1}s^{-1}$, $6.62{\times}10^{-11}(cm^2eV)^{-1}$. These results of OTFT device show that polar components were well eliminated by the high vacuum seasoning processes.

  • PDF

Improved Pyroelectric Characteristics of 0~3 $PbTiO_3$/P(VDF/TrFE) Composites Films for Infrared Sensing (적외선 감지를 위한 0~3 $PbTiO_3$/P(VDF/TrFE) 복합체 필름의 향상된 초전 특성)

  • Kwon, Sung-Yeol
    • Polymer(Korea)
    • /
    • v.35 no.5
    • /
    • pp.375-377
    • /
    • 2011
  • $PbTiO_3$/P(VDF/TrFE) 0~3 composites thin films with 0.10 and 0.13 of ceramic volume fraction factor have been fabricated by two-step spin coating technique and analyzed. 0~3 connectivity of $PbTiO_3$/P(VDF/TrFE) composites film was observed successfully by SEM micrography. The SEM picture confirmed 0~3 connectivity. And, in all the properties, 0~3 $PbTiO_3$/P(VDF/TrFE) composites film was superior to P(VDF/TrFE) copolymer. Therefore, with a good low-dielectric constant and a high pyroelectric coefficient, the composite thin films can be used for a new pyroelectric infrared sensor of higher performance.

Characteristics of Organic Thin-Film Transistors with Polymeric Insulator and P3HT by Using Spin-Coating (스핀 코팅으로 제작된 유기 절연체와 P3HT 유기 박막 트랜지스터 특성)

  • Kim, Jung-Seok;Chang, Jong-Hyeon;Kim, Byoung-Min;Ju, Byeong-Kwon;Pak, Jung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1313-1314
    • /
    • 2007
  • This paper presents organic thin-film transistors (OTFTs) with poly(3-hexylthiophene)(P3HT) semiconductor and several polymeric dielectric materials of poly(vinyl phenol)(PVP), poly(vinyl alcohol)(PVA), and polyimide(PI) by using soluble process. The fabricated OTFT's have inverted staggered structure using transmission line method(TLM) pattern. In order to evaluate the electrical characteristics of the OTFT, capacitance-voltage(C-V) and current-voltage(I-V) were measured. C-V graphs were measured at several frequencies of 100 Hz, 1 kHz, and 1 MHz and ID-VDS graphs according to $V_{GS}$. The current on/off ratio and threshold voltage with each of PVP, PVA, and PI based OTFTs were measured to $10^3$, and -0.36, -0.41, and -0.62 V. Also, the calculated mobility with each of PVP, PVA, and PI was 0.097, 0.095, and 0.028 $cm^{2}V^{-1}s^{-1}$, respectively. In the cases of PVP and PVA, the hole mobility of P3HT was in excellent agreement with the published value of 0.1 $cm^{2}V^{-1}s^{-1}$.

  • PDF

Organic Memory Device Using Self-Assembled Monolayer of Nanoparticles (나노입자 자기조립 단일층을 이용한 유기메모리 소자)

  • Jung, Hunsang;Oh, Sewook;Kim, Yejin;Kim, Minkeun;Lee, Hyun Ho
    • Applied Chemistry for Engineering
    • /
    • v.23 no.6
    • /
    • pp.515-520
    • /
    • 2012
  • In this review, the fabrication of silicon based memory capacitor and organic memory thin film transistors (TFTs) was discussed for their potential identification tag applications and biosensor applications. Metal or non-metal nanoparticles (NPs) could be capped with chemicals or biomolecules such as protein and oligo-DNA, and also be self-assembly monolayered on corresponding target biomolecules conjugated dielectric layers. The monolayered NPs were formed to be charging elements of a nano floating gate layer as forming organic memody deivces. In particular, the strong and selective binding events of the NPs through biomolecular interactions exhibited effective electrostatic phenomena in memory capacitors and TFTs formats. In addition, memory devices fabricated as organic thin film transistors (OTFTs) have been intensively introduced to facilitate organic electronics era on flexible substrates. The memory OTFTs could be applicable eventually to the development of new conceptual devices.

Effect of Channel and Gate Structures on Electrical Characteristics of Oxide Thin-Film Transistors (Channel과 gate 구조에 따른 산화물 박막트랜지스터의 전기적 특성 연구)

  • Kong, Heesung;Cho, Kyoungah;Kim, Jaybum;Lim, Junhyung;Kim, Sangsig
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.500-505
    • /
    • 2022
  • In this study, we designed oxide thin-film transistors (TFTs) with dual gate and tri layered split channels, and investigated the structural effect of the TFTs on the electrical characteristics. The dual gates played a key role in increasing the driving current, and the channel structure of tri layers and split form contributed to the increase in the carrier mobility. The tri layered channels consisting of the a-ITGZO and two ITO layers inserted between the gate dielectric and a-ITGZO led to the increase in the on-current by using ITO layers with high conductivity, and the split channels lowered series resistance of the channels. Compared with the mobility (15 cm2/V·s) of the single gate a-ITGZO TFT, the mobility (134 cm2/V·s) of the dual gate tri-layer split channel TFT was remarkably enhanced by the structural effect.

Fabrication of High Tunable BST Thin Film Capacitors using Pulsed Laser Deposition (펄스 레이저 증착법에 의한 BST 박막 가변 Capacitors 제작)

  • Kim, Sung-Su;Song, Sang-Woo;Roh, Ji-Hyoung;Kim, Ji-Hong;Koh, Jung-Hyuk;Moon, Byung-Moo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.79-79
    • /
    • 2008
  • We report the growth of $Ba_{0.5}Sr_{0.5}TiO_3$(BST) thin films and their substrate-dependent electrical characteristics. BST thin films were deposited on alumina(non-single crystal), $Al_2O_3$(100) substrates by Nd:YAG Pulsed Laser Deposition(PLD) with a 355nm wavelength at substrate temperature of $700^{\circ}C$ and post-deposition annealing at $750^{\circ}C$ in flowing $O_2$ atmosphere for 1hours. BST materials had been chosen due to high dielectric permittivity and tunability for high frequency applications, To analyze the oxygen partial pressure effects, deposited films at 1, 10, 50, 100, 150, 200, 300 mTorr. The effects of oxygen pressure on structural properties of the deposited films have been investigated by X-ray diffraction(XRD) and atomic force microscope(AFM), respectively. Then we manufactured a inter-digital capacitor(IDC) patterns twenty fingers and $10{\mu}m$ gap, $700{\mu}m$ length and electrical properties were characterized. The results provide a basis for understanding the growth mechanisms and basic structural and electrical properties of BST thin films as required for tunable microwave devices applications such as varactors and tunable filters.

  • PDF