• 제목/요약/키워드: Thin-Walled Cross-Section

검색결과 112건 처리시간 0.026초

Partial interaction analysis of multi-component members within the GBT

  • Ferrarotti, Alberto;Ranzi, Gianluca;Taig, Gerard;Piccardo, Giuseppe
    • Steel and Composite Structures
    • /
    • 제25권5호
    • /
    • pp.625-638
    • /
    • 2017
  • This paper presents a novel approach that describes the first-order (linear elastic) partial interaction analysis of members formed by multi-components based on the Generalised Beam Theory (GBT). The novelty relies on its ability to accurately model the partial interaction between the different components forming the cross-section in both longitudinal and transverse directions as well as to consider the cross-sectional deformability. The GBT deformations modes, that consist of the conventional, extensional and shear modes, are determined from the dynamic analyses of the cross-section represented by a planar frame. The partial interaction is specified at each connection interface between two adjacent elements by means of a shear deformable spring distributed along the length of the member. The ease of use of the model is outlined by an application performed on a multi-component member subjected to an eccentric load. The values calculated with an ABAQUS finite element model are used to validate the proposed method. The results of the numerical applications outline the influence of specifying different rigidities for the interface shear connection and in using different order of polynomials for the shape functions specified in the finite element cross-section analysis.

Shear deformation effect in flexural-torsional buckling analysis of beams of arbitrary cross section by BEM

  • Sapountzakis, E.J.;Dourakopoulos, J.A.
    • Structural Engineering and Mechanics
    • /
    • 제35권2호
    • /
    • pp.141-173
    • /
    • 2010
  • In this paper a boundary element method is developed for the general flexural-torsional buckling analysis of Timoshenko beams of arbitrarily shaped cross section. The beam is subjected to a compressive centrally applied concentrated axial load together with arbitrarily axial, transverse and torsional distributed loading, while its edges are restrained by the most general linear boundary conditions. The resulting boundary value problem, described by three coupled ordinary differential equations, is solved employing a boundary integral equation approach. All basic equations are formulated with respect to the principal shear axes coordinate system, which does not coincide with the principal bending one in a nonsymmetric cross section. To account for shear deformations, the concept of shear deformation coefficients is used. Six coupled boundary value problems are formulated with respect to the transverse displacements, to the angle of twist, to the primary warping function and to two stress functions and solved using the Analog Equation Method, a BEM based method. Several beams are analysed to illustrate the method and demonstrate its efficiency and wherever possible its accuracy. The range of applicability of the thin-walled theory and the significant influence of the boundary conditions and the shear deformation effect on the buckling load are investigated through examples with great practical interest.

Stiffening evaluation of flat elements towards stiffened elements under axial compression

  • Manikandan, P.;Arun, N.
    • Advances in Computational Design
    • /
    • 제3권1호
    • /
    • pp.71-86
    • /
    • 2018
  • Thin-walled cross-sections can be optimized to enhance their resistance and progress their behaviour, leading to more competent and inexpensive structural system. The aim of this study is to afford a methodology that would facilitate progress of optimized cold formed steel (CFS) column section with maximum ultimate strength for practical applications. The proposed sections are designed to comply with the geometrical standards of pre-qualified column standards for CFS structures as well as with the number of industrialized and practical constraints. The stiffening evaluation process of CFS lipped channel columns, a five different cross section are considered. The experimental strength and behaviour of the proposed sections are verified by using the finite element analysis (FEA). A series comprehensive parametric study is carried out covering a wide range of section slenderness and overall slenderness ratio of the CFS column with and without intermediate web stiffeners. The ultimate strength of the sections is determined based on the Direct Strength Specification and other design equation available from the literature for CFS structures. A modified design method is proposed for the DSM specification. The results indicate that the CFS column with complex edge and intermediate web stiffeners provides an ultimate strength which is up to 78% higher than standard optimized shapes with the same amount of cross sectional area.

주형단면의 비대칭성을 고려한 3차원 사장교의 지진해석 (Seismic Analysis of a 3-dimensional Cable-Stayed Bridge with an Unsymmetric Girder Cross-section)

  • 김철영;장승필
    • 대한토목학회논문집
    • /
    • 제12권2호
    • /
    • pp.11-20
    • /
    • 1992
  • 지진이나 바람과 같은 횡방향 하중이 가해졌을 때, 일반적으로 수직한 촉에 대해서만 대칭인 단면을 갖는 교량의 주형에는 횡방향 휨에 결합된 비틂이 유발되어 특히 사장교의 케이블등에는 예상치 못했던 추가응력이 유발될 수 있다. 이러한 거동은 일반적인 뼈대요소로는 해석할 수 없으므로, 임의의 단면 형상을 갖는 기하학적 비선형 3차원 뼈대요소를 사용하여야 한다. 본 연구에서 사용한 뼈대요소의 이론적인 배경과 검증은 이전에 발표된 논문에 수록되어 있다. 본 논문에서는 주형단면의 비대칭성을 고려한 지진해석을 수행하여 휨-비틂 결합작용에 의한 거동을 연구한다.

  • PDF

Local buckling and shift of effective centroid of cold-formed steel columns

  • Young, Ben
    • Steel and Composite Structures
    • /
    • 제5권2_3호
    • /
    • pp.235-246
    • /
    • 2005
  • Local buckling is a major consideration in the design of thin-walled cold-formed steel sections. The main effect of local buckling in plate elements under longitudinal compressive stresses is to cause a redistribution of the stresses in which the greatest portion of the load is carried near the supporting edges of the plate junctions. The redistribution produces increased stresses near the plate junctions and high bending stresses as a result of plate flexure, leading to ultimate loads below the squash load of the section. In singly symmetric cross-sections, the redistribution of longitudinal stress caused by local buckling also produces a shift of the line of action of internal force (shift of effective centroid). The fundamentally different effects of local buckling on the behaviour of pin-ended and fixed-ended singly symmetric columns lead to inconsistencies in traditional design approaches. The paper describes local buckling and shift of effective centroid of thin-walled cold-formed steel channel columns. Tests of channel columns have been described. The experimental local buckling loads were compared with the theoretical local buckling loads obtained using an elastic finite strip buckling analysis. The shift of the effective centroid was also compared with the shift predicted using the Australian/New Zealand and American specifications for cold-formed steel structures.

Perforated TWCF steel beam-columns: European design alternatives

  • Baldassino, Nadia;Bernardi, Martina;Bernuzzi, Claudio;Simoncelli, Marco
    • Steel and Composite Structures
    • /
    • 제35권5호
    • /
    • pp.701-715
    • /
    • 2020
  • Steel storage racks are lightweight structures, made of thin-walled cold-formed members, whose behaviour is remarkably influenced by local, distortional and overall buckling phenomena, frequently mutually combined. In addition, the need of an easy and rapid erection and reconfiguration of the skeleton frame usually entails the presence of regular perforations along the length of the vertical elements (uprights). Holes and slots strongly influence their behaviour, whose prediction is however of paramount importance to guarantee an efficient design and a safe use of racks. This paper focuses on the behaviour of isolated uprights subjected to both axial load and bending moments, differing for the cross-section geometry and for the regular perforation systems. According to the European standards for routine design, four alternatives to evaluate the bending moment-axial load resisting domains are shortly discussed and critically compared in terms of member load carrying capacity.

토션빔 후륜 현가장치의 구조설계에 관한 연구 (A Study on Structural Design of Torsion Beam Rear Suspension)

  • 강주석
    • 한국자동차공학회논문집
    • /
    • 제13권3호
    • /
    • pp.146-153
    • /
    • 2005
  • Structural design of the torsion beam rear suspension is investigated by calculating warping of the torsion beam. Since the longitudinal displacement in the cross section of the torsion beam due to torsional moment causes normal stress across the beam restrained from outside at both ends, the profile of torsion beam needs to be designed considering the warping. Warping function of the beam is derived with the parameters of cross section fur the arbitrary shapes of torsion beam profiles assuming thin-walled open section. From comparing the warping calculated for two different beam profiles, the design method for the torsion beam in the view point of low stress is discussed. It is shown that the gusset used to reinforce the torsion beam can be optimized in accordance with warping shape. The method to fix the end point of the gusset is proposed to minimize the stress concentrated on the end point of the gusset produced during torsional moment. The result from finite element analysis shows the stress is minimized when the height of gusset end point is coincident with the point where warping of the beam is minimized.

유한요소법 기반의 복합재료 블레이드 단면 특성치 계산에 관한 연구 (A Study on Calculation of Cross-Section Properties for Composite Rotor Blades Using Finite Element Method)

  • 박일주;정성남;조진연;김도형
    • 한국항공우주학회지
    • /
    • 제37권5호
    • /
    • pp.442-449
    • /
    • 2009
  • 유한요소법을 적용하여 고형, 박벽 및 혼합형 단면을 갖는 복합재료 블레이드의 2차원 단면 해석 프로그램을 개발하였다. 이종 적층 복합재료에 대한 물성치는 가중 계수법을 도입하여 결정하였다. 전단 중심치와 비틀림 강성 계수는 St. Venant 비틀림 이론 및 Trefftz 의 정의를 토대로 구하였다. 해석 과정에서 발생하는 단면 강성 행렬의 특이치 문제는 고유치 해석으로부터 강체 모드를 제거함으로써 해결하였다. 다양한 단면 형상에 대한 강성치, 중심치 및 관성치에 대한 수치계산을 수행하였다. 기존의 상용해석 소프트웨어 및 여타 문헌에 제시된 단면 해석 결과와 폭 넓은 비교, 검증 연구를 수행하였으며, 이를 토대로 본 해석 프로그램의 타당성을 보였다.

Study on the flexural behavior of corroded built-up cold-formed thin-walled steel beams

  • Zhang, Zongxing;Xu, Shanhua;Li, Han;Li, Rou;Nie, Biao
    • Steel and Composite Structures
    • /
    • 제37권3호
    • /
    • pp.353-369
    • /
    • 2020
  • Eight cold-formed thin-walled steel beams were performed to investigate the effect of corrosion damage on the flexural behavior of steel beams. The relationships between failure modes or load-displacement curves and corrosion degree of steel beams were investigated. A series of parametric analysis with more than forty finite element models were also performed with different corrosion degrees, types and locations. The results showed that the reduction of cross-section thickness as well as corrosion pits on the surface would lead to a decline in the stiffness and flexural capacity of steel beams, and gradually intensified with the corrosion degree. The yield load, ultimate load and critical buckling load of the corroded specimen IV-B46-4 decreased by 22.2%, 26% and 45%, respectively. The failure modes of steel beams changed from strength failure to stability failure or brittle fracture with the corrosion degree increasing. In addition, thickness damage and corrosion pits at different locations caused the degradation of flexural capacity, the worst of which was the thickness damage of compression zone. Finally, the method for calculating flexural capacity of corroded cold-formed thin-walled steel beams was also proposed based on experimental investigation and numerical analysis results.

비대칭(非對稱) 박벽(薄壁)보 요소(要素)를 이용(利用)한 원형(圓形) 아치의 횡좌굴(橫挫屈) 해석(解析) (Lateral-Torsional Buckling Analysis of the Circular Arches Using Unsymmetric Thin-Walled Beam Elements)

  • 김문영
    • 대한토목학회논문집
    • /
    • 제13권5호
    • /
    • pp.39-52
    • /
    • 1993
  • 비대칭단면(非對稱斷面)을 갖는 박벽공간(薄壁空間)뼈대와 원형(圓形)아아치의 휨-비틂 좌굴해석(挫屈解析)을 수행하기 위하여, 가상(假想)일의 원리(原理)를 이용한 공간(空間)뼈대요소(要素)의 접선강도(接線剛度)매트릭스가 유도(誘導)된다. 양단(兩端) 구속(狗束)된 비틂을 무시(無視)하는 경우와 구속(狗束)된 비틂을 고려(考慮)하는 경우 각각에 대하여 semitangential rotation and moment에 대응(對應)하는 박벽공간(薄壁空間) 뼈대요소(要素)의 탄성(彈性) 및 기하적(幾何的)인 강도(剛度)매트릭스를 산정한다. 이 때, 휨을 받는 평면(平面)보의 처짐함수를 공간(空間) 뼈대요소(要素)의 축방향(軸方向) 및 횡방향(橫方向) 처짐과 비틂회전각에 대한 형상함수(形狀函數)로 사용한다. 순수휨과 균일한 압축력을 받는 도형(圖形)아아치의 횡좌굴문제(橫挫屈問題)를 해석(解析)하여 본(本) 연구(硏究)에 의한 해석결과(解析結果)과 문헌(文獻)의 엄밀해(嚴密解)에 의한 결과들을 비교(比較), 분석(分析)하여 본(本) 연구(硏究)에서 제시한 이론(理論)의 정당성(正當性)을 입증(立證)한다.

  • PDF