• 제목/요약/키워드: Thin-Walled Cross-Section

검색결과 113건 처리시간 0.018초

시위 방향 비대칭 단면의 복합재료 박벽보의 동특성 연구: I. 단일-셀 (Dynamic Characteristics of Composite Thin-Walled Beams with a Chord wise Asymmetric Cross-Section: I. Single-Cell)

  • 김근택
    • 항공우주시스템공학회지
    • /
    • 제12권6호
    • /
    • pp.41-49
    • /
    • 2018
  • 이번 연구에서는 복합재료 박벽보(thin-walled beam)에서 시위 방향으로 단일 셀의 비대칭성 단면을 가지는 모델을 선정하여, 단면의 형상에 대한 이론적인 동특성을 연구하였다. 이를 위해 전단 변형 효과(transverse shear effect)와 와핑 구속 효과(warping restraint effect), 보의 길이 방향으로 일정한 테이퍼비와 기하학적 단면비 등을 고려하고, 비대칭 단면의 와핑 함수 보정을 통해 수학적 모델링을 수행하였다. 그 결과에 따라, 고려한 단면의 질량 계수와 강성 계수 및 고유 진동수 등의 특성을 조사하였다. 특히, 단면의 비대칭성, 와핑 함수를 보정하지 않은 경우, 모델의 테이퍼비와 단면비 등이 고유 진동수에 미치는 영향을 비교 분석하였다.

단모멘트를 받는 개단면 박벽 복합재 보의 횡좌굴 해석 (Lateral Buckling Analysis of Open Section Composite Laminated Beam Under End-Moment)

  • 김만호;신동구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.51-58
    • /
    • 2000
  • Lateral buckling behavior of laminated composite thin-walled I-section beams subjected to bending moment is investigated by applying the nonlinear anisotropic thin-walled beam theory. The constituent laminated thin-walled elements of I-section are assumed to be symmetrically laminated. The bending, twisting, and warping stiffnesses of the cross section are obtained based on the definitions of these stiffnesses In the thin-walled anisotropic beam theory In numerical examples, singly-symmetric I-beams with specially orthotropic, quasi-isotropic, angle-plys and various boundary conditions are considered. To validate the proposed theoretical approach, present analytical solutions are compared with three dimensional finite element solutions.

  • PDF

Natural frequencies and mode shapes of thin-walled members with shell type cross section

  • Ohga, M.;Shigematsu, T.;Hara, T.
    • Steel and Composite Structures
    • /
    • 제2권3호
    • /
    • pp.223-236
    • /
    • 2002
  • An analytical procedure based on the transfer matrix method to estimate not only the natural frequencies but also vibration mode shapes of the thin-walled members composed of interconnected cylindrical shell panels is presented. The transfer matrix is derived from the differential equations for the cylindrical shell panels. The point matrix relating the state vectors between consecutive shell panels are used to allow the transfer procedures over the cross section of the members. As a result, the interactions between the shell panels of the cross sections of the members can be considered. Although the transfer matrix method is naturally a solution procedure for the one-dimensional problems, this method is well applied to thin-walled members by introducing the trigonometric series into the governing equations of the problem. The natural frequencies and vibration mode shapes of the thin-walled members composed of number of interconnected cylindrical shell panels are observed in this analysis. In addition, the effects of the number of shell panels on the natural frequencies and vibration mode shapes are also examined.

일반 사각 단면 형상을 갖는 박판보의 끝단효과에 관한 연구 (End Effects of Thin-Walled Beams with General Quadrilateral Cross Sections)

  • 김진홍;김윤영
    • 대한기계학회논문집A
    • /
    • 제24권9호
    • /
    • pp.2191-2201
    • /
    • 2000
  • End effects due to sectional deformations of thin-walled beams with closed cross section are analysed by a one-dimensional theory. In particular, end effects associated with warping (out of plane m otion) and distortion (in plane motion) are investigated. The exact solutions as a vector form are newly derived to reveal slowly-decaying nature of the end effects in a thin-walled beam loaded by a couple. Several examples of thin-walled beams under various loading conditions indicate that the local end effect zone due to warping and distortion is approximately ten times the typical beam width.

두께가 얇은 단면을 갖는 곡선보의 자유진동 해석 (Free Vibration Analysis of Curved Beams with Thin-Walled Cross-Section)

  • 이병구;박광규;오상진
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1193-1199
    • /
    • 1999
  • This paper deals with the free vibrations of circular curved beams with thin-walled cross-section. The differential equation for the coupled flexural-torsional vibrations of such beams with warping is solved numerically to obtain natural frequencies and mode shapes. The Runge-Kutta and determinant search methods, respectively, are used to solve the governing differential equation and to compute the eigenvalues. The lowest three natural frequencies and corresponding mode shapes are calculated for the thin-walled horizontally curved beams with hinged-hinged, hinged-clamped, and clamped-clamped end constraints. A wide range of opening angle of beam, warping parameter, and two different values of slenderness ratios are considered. Numerical results are compared with existing exact and numerical solutions by other methods.

  • PDF

박벽보의 응력해석을 위한 단면상수의 자동산정 (Automatic Determination of Cross Sectional Properties For Stress Analaysis of Thin-walled Beams)

  • 김문영;최명수;장영;김남일
    • 한국강구조학회 논문집
    • /
    • 제14권1호
    • /
    • pp.41-49
    • /
    • 2002
  • 박벽보의 응력해석을 위한 단면상수 값들을 자동적으로 산정하는 알고리즘을 개발한다. 사용자의 편의를 위해서 최소한의 단면정보만으로 복잡한 폐단면 및 개단면에 대하여 단면상수를 자동적으로 산정할 뿐만 아니라 보이론에 의하여 계산된 단면력에 대하여 대응하는 수직응력 또는 전단응력분포의 자동계산이 가능하다. 본 이론 및 프로그램의 타당성을 검증하기 위하여 기존의 논문결과와 비교하여 타당성을 입증한다.

Automatic analysis of thin-walled laminated composite sections

  • Prokic, A.;Lukic, D.;Ladjinovic, Dj.
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.233-252
    • /
    • 2014
  • In this paper a computer program is developed for the determination of geometrical and material properties of composite thin-walled beams with arbitrary open cross-section and any arbitrary laminate stacking sequence. Theory of thin-walled composite beams is based on assumptions consistent with the Vlasov's beam theory and classical lamination theory. The program is written in Fortran 77. Some numerical examples are given, with complete information about input and output.

비대칭 박벽보에 대한 엄밀한 동적 강도행렬의 유도 (Derivation of Exact Dynamic Stiffness Matrix for Non-Symmetric Thin-walled Straight Beams)

  • 김문영;윤희택
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 가을 학술발표회논문집
    • /
    • pp.369-376
    • /
    • 2000
  • For the general loading condition and boundary condition, it is very difficult to obtain closed-form solutions for buckling loads and natural frequencies of thin-walled structures because its behaviour is very complex due to the coupling effect of bending and torsional behaviour. Consequently most of previous finite element formulations introduced approximate displacement fields using shape functions as Hermitian polynomials, isoparametric interpoation function, and so on. The purpose of this study is to calculate the exact displacement field of a thin-walled straight beam element with the non-symmetric cross section and present a consistent derivation of the exact dynamic stiffness matrix. An exact dynamic element stiffness matrix is established from Vlasov's coupled differential equations for a uniform beam element of non-symmetric thin-walled cross section. This numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. The natural frequencies are evaluated for the non-symmetric thin-walled straight beam structure, and the results are compared with available solutions in order to verify validity and accuracy of the proposed procedures.

  • PDF

The torsional stiffness of bars with L, [, +, I, and □ cross-section

  • Gorzelanczyk, Piotr;Tylicki, Henryk;Kolodziej, Jan A.
    • Steel and Composite Structures
    • /
    • 제7권6호
    • /
    • pp.441-456
    • /
    • 2007
  • In literature for thin-walled sections with L, [, +, I, and ${\Box}$- shapes the approximate torsion equations for stiffness are used which were proposed by Bach (Hsu 1984), p.30. New formulae for torsional stiffness of bars with L, [, +, I, and ${\Box}$ cross section valid not only for thin-walled sections are presented in this paper. These formulae are obtained by appropriate polynomial approximation of stiffness results obtained by means of method of fundamental solutions. On the base of obtained results the validity of Bach's formulae are verified when cross section is not thin-walled.

The finite element model research of the pre-twisted thin-walled beam

  • Chen, Chang Hong;Zhu, Yan Fei;Yao, Yao;Huang, Ying
    • Structural Engineering and Mechanics
    • /
    • 제57권3호
    • /
    • pp.389-402
    • /
    • 2016
  • Based on the traditional mechanical model of thin-walled straight beam, the paper makes analysis and research on the pre-twisted thin-walled beam finite element numerical model. Firstly, based on the geometric deformation differential relationship, the Saint-Venant warping strain of pre-twisted thin-walled beam is deduced. According to the traditional thin-walled straight beam finite element mechanical model, the finite element stiffness matrix considering the Saint-Venant warping deformations is established. At the same time, the paper establishes the element stiffness matrix of the pre-twisted thin-walled beam based on the classic Vlasov Theory. Finally, by calculating the pre-twisted beam with elliptical section and I cross section and contrasting three-dimensional solid finite element using ANSYS, the comparison analysis results show that pre-twisted thin-walled beam element stiffness matrix has good accuracy.