DOI QR코드

DOI QR Code

The torsional stiffness of bars with L, [, +, I, and □ cross-section

  • Gorzelanczyk, Piotr (Higher Vocational State School Pila, Polytechnic Institute) ;
  • Tylicki, Henryk (University of Technology and Life Science in Bydgoszcz, Faculty of Mechanical Engineering) ;
  • Kolodziej, Jan A. (Institute of Applied Mechanics, Poznan University of Technology)
  • Received : 2007.08.08
  • Accepted : 2007.10.22
  • Published : 2007.12.25

Abstract

In literature for thin-walled sections with L, [, +, I, and ${\Box}$- shapes the approximate torsion equations for stiffness are used which were proposed by Bach (Hsu 1984), p.30. New formulae for torsional stiffness of bars with L, [, +, I, and ${\Box}$ cross section valid not only for thin-walled sections are presented in this paper. These formulae are obtained by appropriate polynomial approximation of stiffness results obtained by means of method of fundamental solutions. On the base of obtained results the validity of Bach's formulae are verified when cross section is not thin-walled.

Keywords

References

  1. Arutiumian, N. C. and Abramian, B. L. (1963), Torsion of Elastic Body, (in Rusian: Kruczenije uprugich tiel), Gos. Izd. Fiz.-Mat. Lit., Moskwa.
  2. Bogomolny, A. (1985),"Fundamental solution method for elliptic boundary value problems", SIAM J. Numer. Anal., 22, 644-669. https://doi.org/10.1137/0722040
  3. Burges, G. and Mahajerin, E. (1987),"The fundamental collocation method applied to non-linear Poisson equation in two dimensions", Comput. Struct., 27, 763-767. https://doi.org/10.1016/0045-7949(87)90289-6
  4. Cao, Y., Schultz, W. and Beck, R. (1991),"Three dimensional desingularized boundary integral methods for potential problems", Int. J. Numer. Methods Eng., 12, 785-803. https://doi.org/10.1002/fld.1650120807
  5. Chen, Y.-H. (1982),"On a finite element model for solving Dirichlet's problem of Laplace's equation", Int. J. Num. Meth. Eng., 18, 687-700. https://doi.org/10.1002/nme.1620180506
  6. Chen, Y.-Z. and Chen, Y.-H. (1981),"Solution of the torsion problem for bars with L, +, I, , T- cross-section by a harmonic function continuation technique", Int. J. Eng. Sci., 19, 791-804. https://doi.org/10.1016/0020-7225(81)90112-9
  7. Chou, S. I. and Mohr, J. A., (1990),"Boundary integral method for torsion of composite shafts", Int. J. Struct. Mech. Mater. Sci., 29, 41-56.
  8. Ely, J. F. and Zienkiewicz, O. C. (1960),"Torsion of compound bars - a relaxation solution", Int. J. Mech. Sci., 1 (4), 356-365. https://doi.org/10.1016/0020-7403(60)90055-2
  9. Fairweather, G, Karageorghis, A. and Martin, P. A. (2003),"The method of fundamental solutions for scattering and radiation problems", Eng. Anal. Bound. Elem., 27, 759-769. https://doi.org/10.1016/S0955-7997(03)00017-1
  10. Fairweather, G. and Karageorghis, A. (1998),"The metod of fundamental solutions for elliptic boundary value problems", Adv. Comput. Math., 9, 69-95. https://doi.org/10.1023/A:1018981221740
  11. Golberg, M. A. and Chen, C. S. (1998),"The method of fundamental solutions for potential, Helmholtz and diffusion problems", in: Golberg MA, Editor, Boundary Integral Methods-Numerical and Mathematical Aspects, Boston; Computational Mechanics Publications; 103-176.
  12. Gorzelanczyk, P. and Kolodziej, J. A. (2007),"Some remarks concerning the shape of the source contour with application of the method of fundamental solutions to elastic torsion of prismatic rods", Eng. Anal. Bound. Elem., 32, 64-75.
  13. Herrmann, R. L. (1965),"Elastic torsional analysis of irregular shapes", J. Eng. Mech. Div., ACSE, 91, 11-19.
  14. Hsu, T. T. C. (1984), Torsion of Reinforced Concrete, Van Nostrand, New York.
  15. Katsurada, M. (1990),"Asymptotic error analysis of the charge simulation method", J. Fac. Sci. Univ. Tokyo, Section 1A, 37, 635-657.
  16. Katsurada, M. and Okamoto, H. (1988),"A mathematical study of the charge simulation method. A mathematical study of the charge simulation method", J. Fac. Sci. Univ. Tokyo, Section 1A, 35, 507-518.
  17. Katsurada, M. and Okamoto, H. (1996),"The collocation points of the fundamental solution method for the potential problem", Comput. Math. Appl., 31, 123-137. https://doi.org/10.1016/0898-1221(95)00186-3
  18. Kitagawa, T. (1988),"On the numerical stability of the method of fundamental solutions applied to the Dirichlet problem", Japan. J. Appl. Math., 35, 507-518.
  19. Kitagawa, T. (1991),"Asymptotic stability of the fundamental solution method", J. Comp. Appl. Math., 38, 263-269. https://doi.org/10.1016/0377-0427(91)90175-J
  20. Kolodziej, J. A. and Kleiber, M. (1989),"Boundary collocation method vs FEM for some harmonic 2-D problems", Comput. Struct., 33, 155-168. https://doi.org/10.1016/0045-7949(89)90138-7
  21. Koopman, G. H., Song, L. and Fahnline, J. B. (1988),"A method for computing acoustic fields based on the principle of wave superposition", J. Acoust. Soc. Am., 86, 2433-2438.
  22. Kupradze, V. D. and Aleksidze, M. A. (1963),"Approximate method of solving certain boundary-value problems (in Rusian)", Soobsc. Akad. Nauk Gruzin. SSR, 30, 529-536.
  23. Kupradze, V. D. and Aleksidze, M. A. (1964),"The method of functional equations for an approximate solution of certain boundary value problems", USSR. Comput Math Comput Phys, 4, 683-715.
  24. Mathon, R. and Johnston, R. L. (1977),"The approximate solution of elliptic boundary-value problems by fundamental solutions", SIAM J. Numer. Anal., 14, 638-650. https://doi.org/10.1137/0714043
  25. Mendelson, A. (1968), Plasticity: Theory and Applications, Macmillan, New York.
  26. Mendelson, A. (1973),"Solution of elastoplastic torsion problem by boundary integral method", NASA TND, 7872.
  27. Partridge, P. W. and Sensale, B. (2000),"The method of fundamental solutions with dual reciprocity for diffusion and diffusion-convection using subdomains", Eng. Anal. Bound. Elem., 24, 633-641. https://doi.org/10.1016/S0955-7997(00)00043-6
  28. Sokolnikoff, I. S. (1956), Mathematical Theory of Elasticity,: McGraw Hill, New York.
  29. Timoshenko, S.P. and Goodier, J. N. (1970), Theory of Elasticity, McGraw-Hill, New York .
  30. Wang, H., Qin, Q.-H and Kang, Y. L. (2005),"A new meshless method for steady-state heat conduction problems in anisotropic and inhomogeneous media", Archive of Applied Mechanics, 74, 563-579. https://doi.org/10.1007/s00419-005-0375-8