• Title/Summary/Keyword: Thin walled tube

Search Result 79, Processing Time 0.024 seconds

Manufacture and Bending Behavior of Stainless Steel Cylindrical Shell Filled with Aluminum Alloy Foam (다공성 알루미늄 합금이 충진된 스테인레스 강 원통 Shell의 제조 및 굽힘거동)

  • Kim, Am-Kee;Lee, Hyo-Jin;Cho, Seong-Seock
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.19-24
    • /
    • 2003
  • Potential applications of foam-filled section are the automotive structures. A foam-filled section can be used for the front rail and firewall structures to absorb impact energy during frontal or side collision. In the case of side collision where bending is involved in the crushing mechanics, the foam filler will be significant in maintaining progressive crushing of the thin-walled structures so that more impact energy can be absorbed. In this study, the manufacturing process of closed cell aluminum alloy foam filled stainless steel tube was studied, and the various foam filled specimens including piecewise fillers were prepared, tested and discussed about the bending behaviors.

  • PDF

Buckling behavior of bundled inclined columns: Experimental study and design code verification

  • Moussa Leblouba;Samer Barakat;Raghad Awad;Saif Uddin Al-Khaled;Abdulrahman Metawa;Abdul Saboor Karzad
    • Steel and Composite Structures
    • /
    • v.52 no.2
    • /
    • pp.183-197
    • /
    • 2024
  • Not all structural columns maintain a vertical orientation. Several contemporary building structures have inclined columns, introducing distinct challenges, particularly in buckling behavior. This study examines the buckling behavior of inclined, thin-walled steel bundled columns, differing from typical vertical columns. Using specimens with three tubes welded to plates linearly aligned at the top and triangularly at the bottom, tests indicated that buckling capacity increases with tube wall thickness and diameter but decreases with column height. Inclined tubes in bundled columns showed improved buckling resistance over vertical ones. Results were verified against standard steel design guidelines to assess their predictive accuracy.

A Study on Rapid Mold Heating System using High-Frequency Induction Heating (고주파 유도가열을 사용한 급속 금형가열에 관한 연구)

  • Jeong, Hui-Tack;Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.

Energy absorption of the ring stiffened tubes and the application in blast wall design

  • Liao, JinJing;Ma, Guowei
    • Structural Engineering and Mechanics
    • /
    • v.66 no.6
    • /
    • pp.713-727
    • /
    • 2018
  • Thin-walled mental tubes under lateral crushing are desirable and reliable energy absorbers against impact or blast loads. However, the early formations of plastic hinges in the thin cylindrical wall limit the energy absorption performance. This study investigates the energy absorption performance of a simple, light and efficient energy absorber called the ring stiffened tube. Due to the increase of section modulus of tube wall and the restraining effect of the T-stiffener flange, key energy absorption parameters (peak crushing force, energy absorption and specific energy absorption) have been significantly improved against the empty tube. Its potential application in the offshore blast wall design has also been investigated. It is proposed to replace the blast wall endplates at the supports with the energy absorption devices that are made up of the ring stiffened tubes and springs. An analytical model based on beam vibration theory and virtual work theory, in which the boundary conditions at each support are simplified as a translational spring and a rotational spring, has been developed to evaluate the blast mitigation effect of the proposed design scheme. Finite element method has been applied to validate the analytical model. Comparisons of key design criterions such as panel deflection and energy absorption against the traditional design demonstrate the effectiveness of the proposed design in blast alleviation.

Torsional response of stiffened circular composite spar (보강된 복합재 원형 스파의 비틀림 거동)

  • Kim, Sung Joon;Lee, Donggeon
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.27 no.1
    • /
    • pp.51-56
    • /
    • 2019
  • To reduce the structural weight, thin-walled circular composite tube has been used as a main spar of high altitude-long endurance unmanned air vehicle(HALE UAV). Predicting the torsional response of stiffened circular spar is complex due to the inhomogeneous nature of section properties, which are dependent on fiber architecture and constituent material properties. The stiffener were placed in the top and bottom sectors of a tube to increase the torsional capabilities such as the rigidity and buckling strength. Numerical simulations were performed to estimate the effect of the stiffener on the torsional capacities. A static experimental test was performed on a stiffened tube, and the test results were compared with a numerical model. The numerical models showed good correlation and demonstrated the ability to predict the torsional capacity. Results presented herein will exhibit the effectiveness of stiffener on torsional strength and stiffness.

Structural characteristics of welded built-up square CFT column-to-beam connections with external diaphragms

  • Lee, Seong-Hui;Yang, Il-Seung;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.10 no.3
    • /
    • pp.261-279
    • /
    • 2010
  • Generally, a box tube, which is used for an existing square CFT structure, is made by welding four plates. The manufacturing efficiency of this steel tube is poor, and it also needs special welding technology to weld its internal diaphragm and the through diaphragm. Therefore, an interior-anchor-type square steel tube was developed using the method of cold-forming thin plates to prevent welding of the stress concentration position, and to maximize the section efficiency. And, considering of the flow of beam flange load, the efficiency of erection and the weldability of the diaphragm to thin walled steel column, the external diaphragm connection was selected as the suitable type for the welded built-up square CFT column to beam connection. And, an analytical study and tests were conducted to evaluate the structural performance of the suggested connection details and to verify the suggested equations for the connection details. Through this study, the composite effect of the internal anchor to concrete, the resistance and stress distribution of the connections before and after the existing column is welded to the beam, the effective location of welding in connection were analyzed.

A Study of Bending Process for Development of Subframe by Hydroforming (일체화 성형 서브프레임 개발을 위한 벤딩 공정의 영향성 연구)

  • 서창희;이우식;김헌영;임희택
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.262-265
    • /
    • 2003
  • In the present study, subframe was developed using hydroforming technology. The manufacturing process for subframe consists of tube bending, pre-forming and hydroforming. The effects of bending process for manufacturing hydroformed subframe were researched. And the variables of bending process were studied by FEM simulation. The bending method is rotary draw bending that is the most popular, cost-effective bending method for thin walled tubes.

  • PDF

Transparent MWCNT Thin Films Fabricated by using the Spray Method (스프레이법으로 제작된 투명 MWCNT 박막)

  • Jang, Kyung-Uk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.4
    • /
    • pp.338-342
    • /
    • 2010
  • Carbon nanotubes (CNTs) have excellent electrical, chemical stability, mechanical and thermal properties. The MWCNT films were investigated as a transparent electrode for the solar cell, OLED, and field-emission display. MWCNT films were fabricated by air spray method, whose process is quite low-costed, using the multi-walled CNTs solution on glass substrates. Moreover, the most stable film was fabricated when the spraying time was 60 sec. The film that was sprayed with the MWCNT dispersion for 60 sec, has 300nm thick. And its electric resistivity, transmittance rate, mobility and carrier concentration are $6{\times}10^{-2}{\Omega}{\cdot}cm$, 50% at ${\lambda}=550mm$, $4.3{\times}10^{-2}cm^2/V{\cdot}s$ and $2.1{\times}10^{21}cm^{-3}$, respectively. Also, absorption energy of MWCNT films show from 3.9 eV to 4.6 eV. Furthermore, we can use MWCNT films fabricated by the spray method for the transparent electrode.

Comparison of Forming force on forward and Backward Flow Forming for Combustion Chamber (연소기를 위한 전후방 유동성형에서의 성형력 비교)

  • Nam, Kyoun-Go;Cho, Cheon-Hwey;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.34-39
    • /
    • 2006
  • The flow forming has been used to produce long thin walled tube parts, with reduced forming force and enhanced mechanical for a good finished part, compared with other method formed parts. Especially, the flow forming is suitable for making high precision thin walled cylinders, such as rocket motor cases, combustion chamber, hydraulic cylinders and high-pressure vessels and so on. In this paper, finite element analysis of three-roller forward and backward flow forming for combustion chamber is carried out to study effects of forming depth and feed rate on forming force. The axial and radial forming forces of forward flow forming on several forming depth and feed rate conditions are compared with those of backward flow forming.

High-yield synthesis of thin multiwalled carbon nanotubes and their field emission characteristics

  • Jeong, Hee-Jin;Song, Young-Il;Choi, Ha-Kyu;Kim, Gil-Yong;Yu, Tong;Lim, Seong-Chu;Lee, Young-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1443-1446
    • /
    • 2005
  • We have synthesized thin multi-walled carbon nanotubes (t-MWCNTs) using a catalytic chemical vapor deposition (CCVD) method with FeMoMgO catalyst. The number of tube walls were 2 ${\sim}$ 6 with the corresponding diameters of 3 ${\sim}$ 6 nm. We obtained high production yield of over 3000 wt% compared to the weight of the supplied catalyst. These t-MWCNTs revealed the intermediate structural characteristics between single- and multi-walled carbon nanotubes (SWCNTs and MWCNTs). We have also characterized the field emission properties such as turn-on field and emission current, and current degradation from these t-MWCNTs together with SWCNTs and MWCNTs.

  • PDF