• 제목/요약/키워드: Thin film cathode

검색결과 164건 처리시간 0.02초

Relationship between Secondary Electron Emissions and Film Thickness of Hydrogenated Amorphous Silicon

  • Yang, Sung-Chae;Chu, Byung-Yoon;Ko, Seok-Cheol;Han, Byoung-Sung
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권4호
    • /
    • pp.185-189
    • /
    • 2004
  • The temporal variation of a secondary electron emission coefficient (${\gamma}$ coefficient) of hydrogenated amorphous silicon (a-Si:H) was investigated in a dc silane plasma. Estimated ${\gamma}$ coefficients have a value of 2.73 ${\times}$ 10$^{-2}$ on the pure aluminum electrode and 1.5 ${\times}$ 10$^{-3}$ after 2 hours deposition of -Si:H thin films on a cathode. It showed an abrupt decrease for about 30 minutes before saturation. The variation of the ${\gamma}$ coefficient was estimated as a function of the thin film thickness, and the film thickness was about 80 nm after 30 minutes deposition time. These results are compared with the results of a computer simulation for ion penetration into a cathode.

CsCl 보호막을 이용한 전면발광 OLED의 전기 및 광학적 특성 (Electrical and Optical Properties of Top Emission OLEDs with CsCl Passivation Layer)

  • 김소연;문대규;한정인
    • 한국전기전자재료학회논문지
    • /
    • 제21권2호
    • /
    • pp.173-177
    • /
    • 2008
  • We have developed the transparent passivation layer for top emission organic light emitting diodes using CsCl thin film by the thermal evaporation method. The CsCl film was deposited on the Ca/Ag semitransparent cathode. The optical transmittance of Ca/ Ag/CsCl triple layer is higher than that of Ca/Ag double layer in the visible range. The device with a structure of glass/Ni/2-TNATA/a-NPD/Alq3:C545T/BCP/Alq3/Ca/Ag/CsCl results in higher efficiency than the device without CsCl passivation layer. The device without CsCl thin film shows a current efficiency of 7 cd/A, whereas the device passivated with CsCl layer shows an efficiency of 10 cd/A. This increase of efficiency isresulted from the increased optical extraction by the CsCl passivation layer.

Recent Progress on Voltage Drop Compensation in Top Emission Organic Light Emitting Diodes (OLED)

  • Jeong, Byoung-Seong
    • 반도체디스플레이기술학회지
    • /
    • 제19권1호
    • /
    • pp.49-54
    • /
    • 2020
  • The voltage drop due to the thin cathode film at the large size top emission OLED panel was successfully compensated with making electrical contact between thin cathode and anode auxiliary electrode by 355nm wavelength of laser. It was found that the luminance uniformity dramatically increased from around 15% to more than 80% through this electrical compensation between thin cathode and anode auxiliary electrode. Moreover, the removing process for EL materials on the anode auxiliary electrode process by laser was very reliable and stable. Therefore, it is thought that the EL removal method using laser to make electrical contacts is very appropriate to mass production for such a large size top emission OLEDs to obtain high uniformity of luminance.

Active-Matrix Cathodes though Integration of Amorphous Silicon Thin-Film Transistor with triode -and Diode-Type field Emitters

  • Song, Yoon-Ho;Cho, Young-Rae;Hwang, Chi-Sun;Kim, Bong-Chul;Ahn, Seong-Deok;Chung, Choong-Heui;Kim, Do-Hyung;Uhm, Hyun-Seok;Lee, Jin-Ho;Cho, Kyoung-Ik
    • Journal of Information Display
    • /
    • 제2권3호
    • /
    • pp.72-77
    • /
    • 2001
  • Amorphous silicon thin-film transistors (a-Si TFTs) were incorporated into Mo-tip-based triode-type field emitters and diode-type ones of carbon nanotubes for an active-matrix cathode (AMC) plate of field emission displays. Also, we developed a novel surface-treatment process for the Mo-tip fabrication, which gleatly enhanced in the stability of field emission. The field emission currents of AMC plates on glass substrate were well controlled by the gate bias of a-Si TFTs. Active-matrix field emission displays (AMFEDs) with these AMC plates were demonstrated in a vacuum chamber, showing low-voltage matrix addressing, good stability and reliability of field emission, and highly uniform light emissions from the anode plate with phosphors. The optimum design of AMFEDs including a-Si TFTs and a new light shield/focusing grid is discussed.

  • PDF

투입전력 및 두께 변화 조건에 따른 Indium zinc oxide 박막의 특성 (Characteristics of indium zinc oxide thin films with input power and film thickness)

  • 임유승;김상모;금민종;손인환;장경욱;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.406-407
    • /
    • 2007
  • We prepared indium zinc oxide (IZO) thin film for cathode electrode such as an application of flat panel display by using the facing targets sputtering (FTS) method at room temperature. The effects of input power and film thickness were investigated with respect to physical and optical properties of films such as deposition rate, electrical properties, microstructure and transmittance. We could obtain properties of IZO thin films of under $10^{-3}\;{\Omega}-cm$ in resistivity and the thin films of over 90% in transmittance. Also, we obtained IZO thin films which were an amorphous structure.

  • PDF

Kr가스에 의한 OLED용 Al 음전극의 표면 형상 (Surface morphology of Al cathode for OLED with Kr gas)

  • 김현웅;금민종;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 추계학술대회 논문집 Vol.18
    • /
    • pp.283-284
    • /
    • 2005
  • Al electrode for OLED was deposited by Facing Targets Sputtering(FTS) system which can reduce the damage of organic layer. The Al thin films were deposited on the slide glass as a function of working gas such as Ar, Kr or mixed gas. The film surface image was observed by AFM and SEM. In the results, when Al thin film were deposited using mixed gas, the surface morphology was improved in some region.

  • PDF

대향타겟식 스퍼터링법을 이용한 TOLED용 ITO 박막의 산소 가스 의존성 (Dependence on the Oxygen Gas of ITO Thin film for TOLED by Facing Targets Sputtering Method)

  • 금민종;김경환
    • 한국전기전자재료학회논문지
    • /
    • 제19권1호
    • /
    • pp.87-90
    • /
    • 2006
  • In case of preparation of ITO thin film for using top electrode of Top-emitting Organic Light Emitting Diodes(TOLEDs), the ITO thin film should be prepared at room temperature and low oxygen gas flow condition in order to reduced the damage of organic layer due to the bombardment of highly energetic particles such as negative oxygen ions which accrued from the plasma. In this study, the ITO thin film with high optical transmittance and low resistivity prepared as a function of oxygen gas (0 ${\~}$ 0.8 sccm) and Ar gas was fixed at 20 sccm by the Facing Targets Sputtering (FTS) method. The electrical and optical properties of ITO thin films were measured by Hall effect measurement, UV/VIS spectrometer, respectively In the results, we obtained the ITO thin film with lowest resistivity($3{\times}10^{-4} {\Omega}{\cdot} cm$) at oxygen gas flow 0.2 sccm and optical transmittance over $80\%$ at oxygen gas flow over 0.2 sccm.

In-situ 스퍼터링을 이용한 마이크로 박막 전지의 제작 및 전지 특성 평가 (Fabrication and Electrochemical Characterization of All Solid State Thin Film Micro-Battery by in-situ sputtering)

  • 전은정;신영화;남상철;조원일;손봉희;윤영수
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.159-162
    • /
    • 1999
  • All solid state thin film micro-batteries consisting of lithium metal anode, an amorphous LiPON electrolyte and cathode of vanadium oxide have been fabricated and characterized, which were fabricated with cell structure of Li/LiPON/V$_2$O$\sub$5/Pt. The vanadium oxide thin films were formed by d.c. reactive sputtering on Pt current collector. After deposition of vanadium oxide films, in-situ growths of lithium phosphorus oxynitride film were conducted by r.f. sputtering of Li$_3$PO$_4$ target in mixture gas of N$_2$ and O$_2$. The pure metal lithium film was deposited by thermal evaporation on thin film LiPON electrolyte. The cell capacity was about 45${\mu}$Ah/$\textrm{cm}^2$ $\mu\textrm{m}$ after 200 cycle. No appreciable degradation of the cell capacity could be observed after 50 cycles .

  • PDF

Ex-situ 스퍼터링법에 의한 $V_2O_5$ 전 고상 박막전지의 전기화학적 특성 (Electrochemical Characteristics of $V_2O_5$ based All Solid State Thin Film Microbattery by Ex-situ Sputtering Method)

  • 임영창;남상철;전은정;윤영수;조원일;조병원;전해수;윤경석
    • 전기화학회지
    • /
    • 제3권1호
    • /
    • pp.44-48
    • /
    • 2000
  • 상온에서 DC-magnetron sputtering으로 증착한 비정질의 $V_2O_5$ 박막을 양극물질로 하여 $V_2O_5/LIPON/Li$으로 구성된 박막형 리튬이차전지를 제작하였다. $V_2O_5$의 양극특성은 액체전해질을 이용한 half cell 구조에서 평가하였으며, $Ar/O_2$ 분압비의 변화에 따라 제작된 $V_2O_5$ 양극은 분압비 80/20에서 가장 좋은 특성을 보였다. 자체 제작한 $Li_3PO_4$ 타겟을 사용하여 RF-sputtering으로 순수한 질소 분위기 하에서 양극 위에 고체전해질 LIPON 박막을 형성하였으며, 1.2-4.0V vs. Li 구간에서 리튬에 대해 반응성이 없는 안정한 화합물임을 확인하였다. 음극으로 쓰인 약 $2{\mu}m$두께의 금속리튬박막은 진공 열 증착법으로 제조하였으며, $V_2O_5/LIPON/Li$의 박막형 리튬이차전지는 $1.2\~3.5V$ 구간에서 초기에 약 $150{\mu}A/cm^2{\mu}m$의 높은 방전용량을 나타내었다.