• Title/Summary/Keyword: Thin Oxide

Search Result 2,635, Processing Time 0.038 seconds

The polarity effect of electronic waves interference in the ultra thin oxide MOS capacitor (초박막 산화막 MOS 캐패시터에서 전자파 간섭의 극성 효과)

  • 강정진
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.601-605
    • /
    • 1995
  • This study was concerned, after the oxide films(50 [.angs.]) were grown in a furnace and the MOS capacitor fabricated, with experimental comparison and verification about the Interference Effect of Electronic Waves in the ultra thin oxide/silicon interface. The average error was about 0.8404[%] in n'gate/p-sub and about 0.2991[%] in p$^{+}$gate/p-sub. Therefore, it was predicted that the Interference Effect of Electronic Waves can overcome somewhat according to the gate polarity.

  • PDF

Reaction process in electrochromism of tungsten oxide thin films

  • An, Il-Sin;Lee, Chang-Hyo;Lim, Won-Taeg
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.2 no.2
    • /
    • pp.85-91
    • /
    • 1998
  • The electrochromic behaviors of de-magnetron sputtered tungsten oxide thin films were investigated during coloration and bleach cycles using in situ real-time spectroscopic ellipsometry. Effective medium approximation and least-squares regression analyses were employed to investigate the electrochromic process. The optical properties of the tungsten oxide film were analyzed using the oscillator model and the evolution of the process using a reaction-limited model. In these analyses, we found that two different reaction rates were associated with the process. We ascribe this behavior to the microstructure of this films.

  • PDF

Transparent Conductive Indium Zinc Tin Oxide Thin Films for Solar Cell Applications

  • Damisih, Damisih;Lee, Hee-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.208-208
    • /
    • 2010
  • Indium zinc tin oxide (IZTO) thin films were studied as a possible alternative to indium tin oxide (ITO) films for providing low-cost transparent conducting oxide (TCO) for thin film photovoltaic devices. IZTO films were deposited onto glass substrates at room temperature. A dc/rf magnetron co-sputtering system equipped with a ceramic target of the same composition was used to deposit TCO films. Earlier studies showed that the resistivity value of $In_{0.6}Zn_{0.2}Sn_{0.2}O_{1.5}$ (IZTO20) films could be lowered to approximately $6{\times}10^{-4}ohm{\cdot}cm$ without sacrificing optical transparency and still maintaining amorphous structure through the optimization of process variables. The growth rate was kept at about 8 nm/min while the oxygen-to-argon pressure ratio varied from 0% to 7.5%. As-deposited films were always amorphous and showed strong oxygen pressure dependence of electrical resistivity and electron concentration values. Influence of forming gas anneal (FGA) at medium temperatures was also studied and proven effective in improving electrical properties. In this study, the chemical composition of the targets and the films varied around the $In_{0.6}Zn_{0.2}Sn_{0.2}O_{1.5}$ (IZTO20). It was the main objective of this paper to investigate how off-stoichiometry affected TCO characteristics including electrical resistivity and optical transmission. In addition to the composition effect, we have also studied how film properties changed with processing variables. IZTO thin films have shown their potential as a possible alternative to ITO thin films, in such way that they could be adopted in some applications where currently ITO and IZO thin films are being used. Our experimental results are compared to those obtained for commercial ITO thin films from solar cell application view point.

  • PDF

Electrical and Optical Properties of P-type Amorphous Oxide Semiconductor Mg:$ZnCo_2O_4$ Thin-Film

  • Lee, Chil-Hyoung;Choi, Won-Kook;Lee, Jeon-Kook;Choi, Doo-Jin;Oh, Young-Jei
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.87-87
    • /
    • 2011
  • Oxide semiconductors are attractive materials for thin-film electronics and optoelectronics due to compatibility with synthesis on large-area, glass and flexible substrate. However, development of thin-film electronics has been hampered by the limited number of semiconducting oxides that are p-type. We report on the effect of the oxygen partial pressure ratio in the gas mixture on the electrical and optical properties of spinel Mg:$ZnCo_2O_4$ thin films deposited at room temperature using RF sputtering, that exhibit p-type conduction. The thin-films are deposited at room temperature in a background of oxygen using a polycrystalline Mg:$ZnCo_2O_4$ ablation target. The p-type conduction is confirmed by positive Seebeck coefficient and positive Hall coefficient. The electrical resistivity and carrier concentration in on dependent Mg:$ZnCo_2O_4$ thin films were found to be dependent on the oxygen partial pressure ratio. As a result, it is revealed that the Mg:$ZnCo_2O_4$ thin-films were greatly influenced on the electrical and optical properties by the oxygen partial pressure condition. The visible region of the spectrum of 36~85%, and hole mobility of 1.1~3.7 $cm^2$/Vs, were obtained.

  • PDF

Evaluation of Oxidation System for Metal Oxide Thin Film (금속 산화물 박막 제작을 위한 산화 시스템의 평가)

  • 임중관;김종서;박용필
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.590-593
    • /
    • 2003
  • Ozone is a strong and useful oxidizing gas for the fabrication of oxide thin films. In order to obtain high quality oxide thin films, higher ozone concentration is necessary. In this paper an ozone condensation system was evaluated from the viewpoint of an ozone supplier for oxide thin film growth. Crone was condensed by an adsorption method and the ozone concentration reached 8.5 mol% in 2.5 h after the beginning of the ozone condensation process, indicating high effectiveness of the condensation process. Ozone was continuously desorbed from the silica gel by the negative pressure. We found the decomposition in the ozone concentration negligible if the condensed ozone is transferred from the ozone condensation system to the film growth chamber within a few minutes.

  • PDF

Applications to Thin Film Processing to Solid Oxide Fuel Cells

  • Kim, Eui-Hyun;Hwang, Hee-Su;Ko, Myeong-Hee;Hwang, Jin-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.696-696
    • /
    • 2013
  • Solid Oxide Fuel Cells (SOFCs) have been gaining academic/industrial attention due to the unique high efficiency and minimized pollution emission. SOFCs are an electrochemical system composed of dissimilar materials which operates at relatively high temperatures ranging from 800 to 1000oC. The cell performance is critically dependent on the inherent properties and integration processing of the constituents, a cathode, an electrolyte, an anode, and an interconnect in addition to the sealing materials. In particular, the gas transport, ion transport, and by-product removal also affect the cell performance, in terms of open cell voltages, and cell powers. In particular, the polarization of cathode materials is one of the main sources which affects the overall function in SOFCs. Up to now, there have been studies on the materials design and microstructure design of the component materials. The current work reports the effect of thin film processing on cathode polarization in solid oxide fuel cells. The polarization issues are discussed in terms of dc- and ac-based electrical characterizations. The potential of thin film processing to the applicability to SOFCs is discussed.

  • PDF

Fabrication of Nickel Oxide Thin Film for Lithium Based Electrolyte by Sol-Gel Method and Electrochromic Properties in Lithium Based Electrolyte (Sol-Gel법을 통한 리튬 기반 전해질에 적합한 니켈 산화물 박막의 제조와 리튬 기반 전해질에서의 전기변색 특성)

  • Park, Sun-Ha;Yoo, Sung-Jong;Lim, Ju-Wan;Yun, Sung-Uk;Cha, In-Young;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.251-257
    • /
    • 2009
  • In this study, we fabricated nickel oxide thin film for lithium based electrolyte using sol-gel method. This film was deposited by dip-coating method with mixed solvent of DameH (N,N-dimethylaminoethanol) and DI water. As changing the ratio between DmaeH and DI water, nickel oxide thin film was presented in different charge density and optical transmittance because they were shown various thickness. It was accounted for changing viscosity and density by the ratio of DmaeH and DI water. The thin film synthesized with 1 : 1 ratio of DmaeH and DI water was expressed best electrochromic performance in lithium based electrolyte, because of thick thickness but porous structures.

Stability enhancement of armorphous znic oxide thin film transistors fabricated by pulsed laser deposition with DBD (PLD-DBD 공정으로 제작된 비정질 Zn 산화물 박막트랜지스터의 안정성 향상)

  • Chun, Yoon-Soo;Chong, Eu-Gene;Jo, Kyoung-Chol;Kim, Seung-Han;Jung, Da-Woon;Lee, Sang-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.391-391
    • /
    • 2010
  • The stability enhancement of Znic oxide thin film transistor deposited by PLD-DBD has been reported here using the bias temperature stress test. Znic oxide (ZnO) thin films were deposited on $SiO_2$/Si (100) by pulsed laser deposition method with and without dielectric barrier discharge (DBD) method. The DBD is the efficient method to adopt the nitrogen ions into the thin films. The TFT characteristics of ZnO TFTs with and without Nirogen (N) doping show similar results with $I_{on/off}$ of $10^5{\sim}10^6$. However. the bias temperature stress (BTS) test of N-doped ZnO TFT with DBD shows higher stability than that of ZnO TFT.

  • PDF

Study on Tribological Behavior of Porous Anodic Aluminum Oxide with respect to Surface Coating (다공성 산화알루미늄의 표면코팅에 따른 트라이볼로지적 특성연구)

  • Kim, Young-Jin;Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.275-281
    • /
    • 2017
  • In this work, we have fabricated anodic aluminum oxide (AAO) with ordered nanoscale porosity through an anodization process. We deposited gold and nano-organic thin films on the porous AAO surface to protect its structure and reduce friction. We investigated the tribological characteristics of the porous AAO with respect to the protective surface coatings using tribometers. While investigating the frictional characteristics of the samples by applying normal forces of the order of micro-Newton, we observed that AAO without a protective coating exhibits the highest friction coefficient. In the presence of protective surface coatings, the friction coefficient decreases significantly. We applied normal forces of the order of milli-Newton during the tribotests to investigate the wear characteristics of AAO, and observed that AAO without protective surface coatings experiences severe damage due to the brittle nature of the oxide layer. We observed the presence of several pieces of fractured particles in the wear track; these fractured particles lead to an increase in the friction. However, by using surface coatings such as gold thin films and nano-organic thin films, we confirmed that the thin films with nanoscale thickness protect the AAO surface without exhibiting significant wear tracks and maintain a stable friction coefficient for the duration of the tribotests.

Deposition of Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells by Combined Thin Film Deposition Techniques (복합 박막 증착 공정을 이용한 중저온 고체산화물 연료전지용 전해질 증착)

  • Ha, Seungbum;Jee, Sanghoon;Tanveer, Waqas Hassan;Lee, Yoonho;Cha, Suk Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.84.1-84.1
    • /
    • 2011
  • Typical solid oxide fuel cells (SOFCs) have limited applications because they operate at high temperature due to low ionic conductivity of electrolyte. Thin film solid oxide fuel cell with yttria stabilized zirconia (YSZ) electrolyte is developed to decrease operating temperature. Pt/YSZ/Pt thin film SOFC was fabricated on anodic aluminum oxide (AAO). The crystalline structure of YSZ electrolyte by sputter is heavily depends on the roughness of porous Pt layer, which results in pinholes. To deposit YSZ electrolyte without pinholes and electrical shortage, it is necessary to deposit smoother and denser layer between Pt anode layer and YSZ layer by sputter. Atomic Layer Deposition (ALD) technique is used to deposit pre-YSZ layer, and it improved electrolyte quality. 300nm thick Bi-layered YSZ electrolyte was successfully deposited without electrical shortage.

  • PDF